Development and Characterization of Compliant FBG-Based, Shear and Normal Force Sensing Elements for Biomechanical Applications

2020 ◽  
Vol 20 (10) ◽  
pp. 5176-5186
Author(s):  
Osama Al-Mai ◽  
Jacques Albert ◽  
Mojtaba Ahmadi
Keyword(s):  
TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


2019 ◽  
Vol 5 (1) ◽  
pp. 513-515
Author(s):  
Andreas Spilz ◽  
Thomas Engleder ◽  
Michael Munz ◽  
Marius Karge

AbstractIn this work, a low-priced smart fabric forcesensing glove is developed which is able to measure the total amount and direction of the force a person applies on a patient in a physiotherapeutic context. A device like this would be beneficial for the education of physiotherapists, to measure the progress of a patient and to evaluate the treatment. The proposed device uses a new sensor, which is based on a piezoresistive fabric. This fabric changes its electrical resistance according to the applied stress. The characterization of this sensor revealed that the change in resistance of the sensor is dependent of the amount of force, the loaded area, the total time the sensor is loaded and hysteresis. To compensate these behaviours, an additional sensor based on the same smart fabric was developed which measures the loaded area of the first sensor. By combining these two sensors, it is possible to calculate the applied force. The results show the feasibility to build a measurement system out of smart fabric material that can measure the applied force. Furthermore, the prototype shows promising results in determining the applied force in amount and direction.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1506 ◽  
Author(s):  
Yuji Tomizawa ◽  
Krishna Dixit ◽  
David Daggett ◽  
Kazunori Hoshino

We have developed a force sensing system to continuously evaluate the mechanical elasticity of micrometer-scale (a few hundred micrometers to a millimeter) live tissues. The sensing is achieved by measuring the deflection of force sensitive cantilevers through microscopic image analysis, which does not require electrical strain gauges. Cantilevers made of biocompatible polydimethylsiloxane (PDMS) were actuated by a piezoelectric actuator and functioned as a pair of chopsticks to measure the stiffness of the specimen. The dimensions of the cantilevers were easily adjusted to match the size, range, and stiffness of the zebrafish samples. In this paper, we demonstrated the versatility of this technique by measuring the mechanical elasticity of zebrafish embryos at different stages of development. The stiffness of zebrafish embryos was measured once per hour for 9 h. From the experimental results, we successfully quantified the stiffness change of zebrafish embryos during embryonic development.


Author(s):  
Arnaldo Matute ◽  
Leonel Paredes-Madrid ◽  
Elkin Gutierrez ◽  
Carlos A. Parra Vargas
Keyword(s):  

Author(s):  
Li Zhang ◽  
Jingyan Dong

This paper presents the design, analysis, fabrication, and characterization of an electrostatically driven single axis active probing device for cellular force sensing and cell manipulation applications. The active probe is actuated by linear comb driver to create the motion in the probing direction. Both actuation and sensing comb drives are designed for the probing stage. The sensing comb structures enable us to sense the probe displacement when it is actuated, which enables application of force balanced sensing. The designed active probing device has an overall size of 5 mm × 4.5 mm, is fabricated on a silicon-on-insulator (SOI) substrate through surface micromachining technologies and deep reactive-ion etching (DRIE) process. The probe stage structure is fabricated on the 10-μm-thick device layer of SOI wafer. The handle layer beneath probe stage is etched away by DRIE process to decrease the film damping between the stage and the handle wafer thus achieving high quality factor. The proposed single axis probe is aimed at sensing cellular force which ranges from pN to μN and cell manipulation applications.


Sign in / Sign up

Export Citation Format

Share Document