comb drives
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1263
Author(s):  
Nicola Pio Belfiore ◽  
Alvise Bagolini ◽  
Andrea Rossi ◽  
Gabriele Bocchetta ◽  
Federica Vurchio ◽  
...  

This paper presents the development of a new microgripper actuated by means of rotary-comb drives equipped with two cooperating fingers arrays. The microsystem presents eight CSFH flexures (Conjugate Surface Flexure Hinge) that allow the designer to assign a prescribed motion to the gripping tips. In fact, the adoption of multiple CSFHs gives rise to the possibility of embedding quite a complex mechanical structure and, therefore, increasing the number of design parameters. For the case under study, a double four-bar linkage in a mirroring configuration was adopted. The presented microgripper has been fabricated by using a hard metal mask on a Silicon-on-Insulator (SOI) wafer, subject to DRIE (Deep Reactive Ion Etching) process, with a vapor releasing final stage. Some prototypes have been obtained and then tested in a lab. Finally, the experimental results have been used in order to assess simulation tools that can be used to minimize the amount of expensive equipment in operational environments.


2021 ◽  
pp. 251659842110334
Author(s):  
Varun P. Sharma ◽  
Rahul Shukla ◽  
C. Mukherjee ◽  
Pragya Tiwari ◽  
A. K. Sinha

Metal-assisted chemical etching (MaCEtch) has recently emerged as a promising technique to etch anisotropic nano- and microstructures in silicon by metal catalysts. It is an economical wet chemical etching method, which can be a good alternative to deep-reactive ion etching (DRIE) process in terms of verticality and etch depth. In the present study, gold is used as a metal catalyst and deposited using physical vapour deposition. It has already been demonstrated that (100) p-type Si wafer can be etched with vertical and smooth side walls. Effects of varying concentrations of etchant constituents and various other parameters, that is, porosity of deposited Au, surface contaminants, oxide formation, metal catalyst, etching time, role of surface tension of additives on the etch depth and surface defects are studied and discussed in detail. By increasing the hydrofluoric acid (HF) concentration from 7.5 M to 10 M, lateral etching is reduced and the microstructure’s width is increased from 17 µm to 18 µm. Porous defects are suppressed by decreasing the hydrogen peroxide (H2O2) concentration from 1.5 M to 1 M. On increasing the etching time from 30 min to 60 min, the microstructures are over-etched laterally. Smoother side walls are fabricated by using the low-surface-tension additive ethanol. The maximum etch depth of 2.6 µm is achieved for Au catalyst in 30 min. The results are encouraging and useful for the development of vertical comb-drives and Micro-Electro-Mechanical Systems (MEMS).


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1087
Author(s):  
Alessio Buzzin ◽  
Serena Cupo ◽  
Ennio Giovine ◽  
Giampiero de Cesare ◽  
Nicola Pio Belfiore

This paper presents the development of a multi-hinge, multi-DoF (Degrees of Freedom) nanogripper actuated by means of rotary comb drives and equipped with CSFH (Conjugate Surface Flexure Hinges), with the goal of performing complex in-plane movements at the nanoscale. The design approach, the simulation and a specifically conceived single-mask fabrication process are described in detail and the achieved results are illustrated by SEM images. The first prototype presents a total overall area of (550 × 550) μm2, an active clamping area of (2 × 4) μm2, 600 nm-wide circular curved beams as flexible hinges for its motion and an aspect ratio of about 2.5. These features allow the proposed system to grasp objects a few hundred nanometers in size.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2822
Author(s):  
Rocco Crescenzi ◽  
Giuseppe Vincenzo Castellito ◽  
Simone Quaranta ◽  
Marco Balucani

Gyroscopes are one of the next killer applications for the MEMS (Micro-Electro-Mechanical-Systems) sensors industry. Many mature applications have already been developed and produced in limited volumes for the automotive, consumer, industrial, medical, and military markets. Plenty of high-volume applications, over 100 million per year, have been calling for low-cost gyroscopes. Bulk silicon is a promising candidate for low-cost gyroscopes due to its large scale availability and maturity of its manufacturing industry. Nevertheless, it is not suitable for a real monolithic IC integration and requires a dedicated packaging. New designs are supposed to eliminate the need for magnets and metal case package, and allow for a real monolithic MEMS-IC (Integrated Circuit) electronic system. In addition, a drastic cost reduction could be achieved by utilizing off-the-shelf plastic packaging with lead frames for the final assembly. The present paper puts forward the design of a novel tri-axial gyroscope based on rotating comb-drives acting as both capacitive sensors and actuators. The comb-drives are comprised of a single monolithic moving component (rotor) and fixed parts (stators). The former is made out of different concentrated masses connected by curved silicon beams in order to decouple the motion signals. The sensor was devised to be fabricated through the PolyMUMPs® process and it is intended for working in air in order to semplify the MEMS-IC monolithic integration.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 263 ◽  
Author(s):  
Ramin Mirzazadeh ◽  
Stefano Mariani

The development of new compliant resonant microsystems and the trend towards further miniaturization have recently raised the issue of the accuracy and reliability of computational tools for the estimation of fluid damping. Focusing on electrostatically actuated torsional micro-mirrors, a major dissipation contribution is linked to the constrained flow of air at comb fingers. In the case of large tilting angles of the mirror plate, within a period of oscillation the geometry of the air domain at comb-drives gets largely distorted, and the dissipation mechanism is thereby affected. In this communication, we provide an appraisal of simple analytical solutions to estimate the dissipation in the ideal case of air flow between infinite plates, at atmospheric pressure. The results of numerical simulations are also reported to assess the effect on damping of the finite size of actual geometries.


2019 ◽  
Vol 52 (15) ◽  
pp. 37-42
Author(s):  
Richard Schroedter ◽  
Jan Grahmann ◽  
Klaus Janschek
Keyword(s):  

Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 78 ◽  
Author(s):  
Fabio Botta ◽  
Matteo Verotti ◽  
Alvise Bagolini ◽  
Pierluigi Bellutti ◽  
Nicola Belfiore

This paper presents both an experimental and a numerical study concerning the mechanical response of a silicon microgripper with bidirectional electrostatic actuation to externally applied excitations. The experimental set-up is composed of a probe station equipped with mobile probes that apply contact forces. This part of the investigation aims to test the device’s mechanical resistance, its mobility capability and possible internal contacts during the system deformation. The second part of the paper is dedicated to the study of the free undamped vibrations of the microsystem. Finite Element Analysis (FEA) is carried out to evaluate the system vibration modes. The analysis of the modes are useful to predict possible mechanical interference among floating and anchored fingers of the actuating comb drives.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 70 ◽  
Author(s):  
Andrea Veroli ◽  
Alessio Buzzin ◽  
Fabrizio Frezza ◽  
Giampiero de Cesare ◽  
Muhammad Hamidullah ◽  
...  

The evolution of microelectronic technologies is giving constant impulse to advanced micro-scaled systems which perform complex operations. In fact, the actual micro and nano Electro-Mechanical Systems (MEMS/NEMS) easily integrate information-gathering and decision-making electronics together with all sorts of sensors and actuators. Mechanical manipulation can be obtained through microactuators, taking advantage of magnetostrictive, thermal, piezoelectric or electrostatic forces. Electrostatic actuation, more precisely the comb-drive approach, is often employed due to its high versatility and low power consumption. Moreover, the device design and fabrication process flow can be simplified by compliant mechanisms, avoiding complex elements and unorthodox materials. A nano-scaled rotary comb drive is herein introduced and obtained using NEMS technology, with an innovative design which takes advantages of the compliant mechanism characteristics. A theoretical and numerical study is also introduced to inspect the electro-mechanical behavior of the device and to describe a new technological procedure for its fabrication.


Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 57 ◽  
Author(s):  
Silvia Bertini ◽  
Matteo Verotti ◽  
Alvise Bagolini ◽  
Pierliugi Bellutti ◽  
Giuseppe Ruta ◽  
...  

In the last decades, microelectromechanical systems have been increasing their number of degrees of freedom and their structural complexity. Hence, most recently designed MEMSs have required higher mobility than in the past and higher structural strength and stability. In some applications, device thickness increased up to the order of tens (or hundred) of microns, which nowadays can be easily obtained by means of DRIE Bosch process. Unfortunately, scalloping introduces stress concentration regions in some parts of the structure. Stress concentration is a dangerous source of strength loss for the whole structure and for comb-drives actuators which may suffer from side pull-in. This paper presents an analytical approach to characterize stress concentrations in DRIE micro-machined MEMS. The method is based on the linear elasticity equations, the de Saint-Venant Principle, and the boundary value problem for the case of a torsional state of the beam. The results obtained by means of this theoretical method are then compared with those obtained by using two other methods: one based on finite difference discretization of the equations, and one based on finite element analysis (FEA). Finally, the new theoretical approach yields results which are in accordance with the known value of the stress concentration factor for asymptotically null radius notches.


Sign in / Sign up

Export Citation Format

Share Document