A High Modulation Bandwidth, 110 GHz Power-DAC Cell for IQ Transmitter Arrays With Direct Amplitude and Phase Modulation

2014 ◽  
Vol 49 (10) ◽  
pp. 2103-2113 ◽  
Author(s):  
Andreea Balteanu ◽  
Stefan Shopov ◽  
Sorin P. Voinigescu
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Longfang Ye ◽  
Kouxiang Yuan ◽  
Chunhui Zhu ◽  
Yao Zhang ◽  
Yong Zhang ◽  
...  

Abstract The phase modulator is a key component in optical communications for its phase modulation functions. In this paper, we numerically demonstrate a variety of ultra-compact high-efficiency graphene phase modulators (GPMs) based on metal–nanoribbon integrated hybrid plasmonic waveguides in the near-infrared region. Benefiting from the good in-plane mode polarization matching and strong hybrid surface plasmon polariton and graphene interaction, the 20 μm-length GPM can achieve excellent phase modulation performance with a good phase and amplitude decoupling effect, a low insertion loss around 0.3 dB/μm, a high modulation efficiency with V π L π of 118.67 V μm at 1.55 μm, which is 1–3 orders improvement compared to the state-of-the-art graphene modulators. Furthermore, it has a wide modulation bandwidth of 67.96 GHz, a low energy consumption of 157.49 fJ/bit, and a wide operating wavelength ranging from 1.3 to 1.8 μm. By reducing the overlap width of the graphene–Al2O3–graphene capacitor, the modulation bandwidth and energy consumption of the modulator can be further improved to 370.36 GHz and 30.22 fJ/bit, respectively. These compact and energy-efficient GPMs may hold a key to various high-speed telecommunications, interconnects, and other graphene-based integrated photonics applications.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Iraj S. Amiri

AbstractThis work outlined the fast speed response and high modulation bandwidth through LiNbO3 electro-optic modulators. The refractive index is analyzed to estimate the switching voltage and modulation bandwidth for these modulators. The modulation voltage and data transmission data rates are analyzed and discussed clearly through LiNbO3 electro-optic modulators. The modulator’s performance efficiency is upgraded with the optimum modulator length of 10 mm and its thickness of 2 mm. The proposed modulators are compared with GaAs electrooptic modulators under various electro-optic modulators dimensions at 1300 nm near-infrared region and room temperature.


2017 ◽  
Vol 5 (35) ◽  
pp. 8916-8920 ◽  
Author(s):  
D. A. Vithanage ◽  
A. L. Kanibolotsky ◽  
S. Rajbhandari ◽  
P. P. Manousiadis ◽  
M. T. Sajjad ◽  
...  

We report the synthesis, photophysics and application of a novel semiconducting polymer as a colour converter for high speed visible light communication.


1997 ◽  
Vol 08 (03) ◽  
pp. 475-494 ◽  
Author(s):  
Toshihiko Makino

The high speed performance of partly gain-coupled (GC) DFB lasers consisting of periodically etched strained-layer quantum wells (QW's) is reviewed with comparisons to the equivalent index-coupled (IC) DFB lasers with the same active layers. It is shown that the GC DFB laser has a –3 dB modulation bandwidth of 22 GHz at 10 mW with a stable single mode oscillation at the longer side of the Bragg Stop-band due to in-phase gain coupling. A theoretical analysis is also presented based on the local-normal-mode transfer-matrix laser model which takes into account both the longitudinal distribution of laser parameters and carrier transport effects. The mechanism for high modulation bandwidth of the GC DFB laser is attributed to a higher differential gain due to a reduced carrier transport time which is provided by an effecient carrier injection from the longitudinal etched interface of the QW's.


2006 ◽  
Vol 31 (23) ◽  
pp. 3408
Author(s):  
Ruben S. Luís ◽  
Paulo Monteiro ◽  
António Teixeira

1988 ◽  
Vol 24 (3) ◽  
pp. 138 ◽  
Author(s):  
U. Koren ◽  
B.I. Miller ◽  
G. Eisenstein ◽  
R.S. Tucker ◽  
G. Raybon ◽  
...  

2020 ◽  
Vol 2 (8) ◽  
pp. 2363-2368 ◽  
Author(s):  
Jack IH. Haggar ◽  
Yuefei Cai ◽  
Suneal S. Ghataora ◽  
Richard M. Smith ◽  
Jie Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document