A Vector-Sensing Antenna System: A high-frequency, vector-sensing array based on the two-port loop antenna element.

2016 ◽  
Vol 58 (6) ◽  
pp. 57-63 ◽  
Author(s):  
John H. Meloling ◽  
John W. Rockway ◽  
Michael P. Daly ◽  
Aldo R. Monges ◽  
Jeffery C. Allen ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


2020 ◽  
Vol 47 (9) ◽  
pp. 4020-4031
Author(s):  
Hsin Huang ◽  
Pei‐Yu Chen ◽  
Chih‐Chung Huang

2019 ◽  
Vol 11 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Ziyu Xu ◽  
Qisheng Zhang ◽  
Linyan Guo

AbstractA printed multiband Multi-Input Multiple-Output (MIMO) antenna is proposed in this paper. This MIMO antenna system comprises two symmetric printed monopole antennas. Each antenna element consists of multiple bend lines, producing four resonant modes and covering the GSM900, PCS, LTE2300, and 5G bands. Simulated and measured results prove that the proposed MIMO antenna can be applied to traditional 2G, 3G, 4G, and present 5G mobile communication. By etching four inverted L-shaped grooves on its ground plate, mutual coupling between the adjacent antenna elements has been suppressed. This makes the |S21| at all four resonant modes is lower than −40 dB. In addition, its low coupling mechanism has been analyzed by surface current distribution. The designed multiband MIMO antenna provides an idea of reference to realize low mutual coupling between antenna elements, which is also realizable in infrared or optical regimes with appropriate designs.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


2011 ◽  
Vol 45 (3) ◽  
pp. 111-119 ◽  
Author(s):  
Magdy F. Iskander ◽  
Zhengqing Yun ◽  
Nuri Celik ◽  
Hyoungsun Youn ◽  
Nobutaka Omaki ◽  
...  

AbstractEmerging homeland security applications require low-cost and fast, deployable, high-frequency (HF) radar systems and the ability to operate in challenging terrain environments. With the need to cover as many border and coastal areas as possible, taking advantages of available transmitter resources to track targets using passive radar technologies is yet another area of research of considerable interest. In this paper, we describe the development of an HF radar system that meets these operational challenges, and we also highlight some recent implementation of the passive radar technology for homeland security applications. Specifically, we describe the design of a novel, electrically small HF antenna system consisting of three helical elements, one connected to the feed port while the other two are folded arms terminated with switchable loads. The antenna is 0.90-m (<3 feet) high with a small ground disk of 0.60 m (∼2 feet) diameter. The antenna is self-resonant at multiple frequencies (5.7, 16, 20.5, and 27.7 MHz) and with input impedance values that can be easily matched to a 50-Ω coaxial feed. Values of the electrical size ka range from 0.44 at 30 MHz down to 0.08 at 5.7 MHz. The achieved bandwidths range from 1.4% up to 12% and associated efficiencies range from 66.2% to 76% within the HF band (3‐30 MHz). As for the operational requirement in challenging terrain environments, a setup in a hilltop-type environment with a slope terrain and surface roughness was considered. A propagation modeling and ray-tracing approach was used to evaluate the impact of such terrain conditions on the effective interelement spacing of an HF radar antenna array and the subsequent impact on its beamforming and beam steering performance. It is shown that while the effect of the slope on the effective interelement spacing of the array could be very significant, diffraction effects from surface roughness resulted in a much smaller, but significant, error of about 18°. Results from some initial work on the implementation of passive radar technology, with focus on addressing the bandwidth requirement to ensure practical resolution values, are also described. It is shown that signals from wide-band transmitters (e.g., High Definition Television [HDTV] signals) rather than those from radio stations are required to provide acceptable range resolution. These as well as simulation and experimental results of the antenna design, and results from beamforming simulations illustrating the effect of a rough hilltop terrain on the HF radar performance are described.


2021 ◽  
Vol 13 (19) ◽  
pp. 3946
Author(s):  
Tomasz Aleksander Miś ◽  
Józef Modelski

This article presents an analysis of measurements collected during a six-month-long experimental deployment of a surface-placed horizontal magnetic loop antenna. The changes in the measured parameters of the loop are investigated in relation to the surrounding environment’s composition, temperature and water content. Basic functions describing these changes are formulated. The results are confronted with outcomes from similar experiments from previous years and different locations, showing good compliance. The developed functions and antenna system can be used for environmental monitoring of soil composition and humidity over large areas and volumes, helpful in, for example, flood awareness.


2020 ◽  
Vol 10 (15) ◽  
pp. 5392 ◽  
Author(s):  
Won Bin Park ◽  
Young-Mi Park ◽  
Keum Cheol Hwang

In this letter, an electrically small Spidron fractal loop antenna operating in the VHF band is proposed. The ferrite material, which consists of a nickel-zinc combination, is loaded into inside of the loop antenna to increase the gain of the antenna in the low frequency band. To minimize the magnetic loss of the ferrite in the high frequency band, the amount and configuration of the ferrite are optimized using a genetic algorithm. Through this optimization step, the amount of the ferrite is decreased to 37.5% and the gain of the antenna in the high frequency band is improved. The size of the proposed antenna is 0.0242 × 0.0242 × 0.0051 λL3 at the lowest operating frequency. The proposed antenna was fabricated to verify the performance, and the simulated and measured results are in good agreement. The measured peak gains varied from −31.6 to −1.9 dBi within the measured frequency band. To examine the performance of the proposed antenna mounted on an unmanned aerial vehicle model (UAV), the antenna on a UAV was also simulated and the results were discussed. The simulated realized peak gains of the antenna on the UAV and on flat ground are similar.


Sign in / Sign up

Export Citation Format

Share Document