Current Harmonics Distribution Influence of a Traction Transformer Secondary Winding on a Power Losses Level Taking Into Account Distortion Power

Author(s):  
Maksim Bezzub ◽  
Olexii Bialobrzheskyi ◽  
Oleh Todorov ◽  
Petro Kurliak ◽  
Ihor Reva
2020 ◽  
pp. 85-88 ◽  
Author(s):  
Nadezhda P. Kondratieva

The article describes the results of the study concerning the effect of the voltage level on current harmonic composition in greenhouses irradiators. It is found that its change affects the level of current harmonics of all types of the studied greenhouse irradiators. With decrease of nominal supply voltage by 10 %, the total harmonic distortion THDi decreases by 9 % for emitters equipped with high pressure sodium lamps (HPSL), by 10 % for emitters with electrode-less lamps and by 3 % for LED based emitters. With increase of nominal supply voltage by 10 %, THDi increases by 23 % for lighting devices equipped with HPSL, by 10 % for irradiators with electrode-less lamps and by 3 % for LED based emitters. Therefore, changes of supply voltage cause the least effect on the level of current harmonics of LED based emitters and then the emitters with electrode-less lamps. Change of the level of supply voltage causes the greatest effect on the level of current harmonics of HPSL based irradiators. Mathematical models of dependence of THDi on the level of supply voltage for greenhouse emitters equipped with LED, electrode-less lamps and HPSL lamps were formulated. These mathematical models may be used for calculations of total current when selecting transformers and supply cable lines for greenhouse lighting devices, for design of new or reconstruction of existing irradiation systems of greenhouse facilities, and for calculation of power losses in power supply networks of greenhouse facilities during feasibility studies for energy saving and energy efficiency increasing projects.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1374
Author(s):  
Bartosz Rozegnał ◽  
Paweł Albrechtowicz ◽  
Dominik Mamcarz ◽  
Monika Rerak ◽  
Maciej Skaza

This paper presents the skin effect impact on the active power losses in the sheathless single-core cables/wires supplying nonlinear loads. There are significant conductor losses when the current has a distorted waveform (e.g., the current supplying diode rectifiers). The authors present a new method for active power loss calculation. The obtained results have been compared to the IEC-60287-1-1:2006 + A1:2014 standard method and the method based on the Bessel function. For all methods, the active power loss results were convergent for small-cable cross-section areas. The proposed method gives smaller power loss values for these cable sizes than the IEC and Bessel function methods. For cable cross-section areas greater than 185 mm2, the obtained results were better than those for the other methods. There were also analyses of extra power losses for distorted currents compared to an ideal 50 Hz sine wave for all methods. The new method is based on the current penetration depth factor calculated for every considered current harmonics, which allows us to calculate the precise equivalent resistance for any cable size. This research is part of our work on a cable thermal analysis method that has been developed.


2013 ◽  
Vol 853 ◽  
pp. 352-357
Author(s):  
Calin Chioreanu

Photovoltaic panels (PF), combined with lead-acid battery (AE), are increasingly used, to produce electricity. To work in maximum power points, between (PF) and (AE) is interposed a static converter (DC-DC), which is a harmonic pollution source. Within the paper there are calculated the power losses, due to current harmonics, of a photovoltaic system working at its maximum power. Photovoltaic system works at its maximum power, if in the electronic system there is permanently voltage control among solar battery terminals.


2017 ◽  
Vol 9 (2) ◽  
pp. 53
Author(s):  
R M Craven ◽  
I R Smith ◽  
B M Novac

In addition to the resistive and dielectric losses that inevitably occur near the secondary winding of a Tesla transformer, electromagnetic radiation into the far field also contributes to the overall power losses and thereby reduces both the effective quality factor (Q) and the power transfer efficiency of this winding. A short study of these effects for a laboratory scale transformer has shown that, in addition to its Q-factor being considerably reduced, the secondary winding is an extremely inefficient radiator of electromagnetic energy.


2015 ◽  
Vol 16 (6) ◽  
pp. 559-567 ◽  
Author(s):  
T. Heidarian ◽  
M. Joorabian ◽  
A. Reza

Abstract In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1526 ◽  
Author(s):  
Ilya Galkin ◽  
Andrei Blinov ◽  
Ievgen Verbytskyi ◽  
Denys Zinchenko

The paper deals with a power charger capable of quick simultaneous charging of several unevenly discharged batteries. The charger is designed for use in conjunction with a recently developed power-assist wheelchair composed of two armrest modules associated with wheels—each with its own motor, driver and battery. Uneven discharge of the batteries is very possible in this application. Taking into account the charging power and energy comparable with the most powerful household electrical devices, the refreshing of these batteries and integration of the entire power supply chain into the household grid become a topical and challenging task. Solving of this task requires a special charger that has several channels and can unevenly apply charging power to these channels. At the same time, the charger must not generate current harmonics or reactive power, must operate with good efficiency and satisfy size constraints. In the given research, a configuration of several interleaved isolated single-ended primary-inductor converters is studied. The synthesized mathematical model of the proposed charger provides data about its static and dynamic characteristics while its experimental investigation focuses on operation details (power losses, control features etc.). The obtained results prove that the proposed concept complies with the above-mentioned requirements and can be applied in the discussed application.


1988 ◽  
Vol 102 ◽  
pp. 165-174
Author(s):  
C. de Michelis

AbstractImpurities being an important concern in tokamaks, spectroscopy plays a key role in their understanding. Techniques for the evaluation of concentrations, power losses and transport properties are surveyed, and a few developments are outlined.


2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


2014 ◽  
Vol 1 ◽  
pp. 13-20
Author(s):  
Ibrahim Aliskan ◽  
◽  
Rustem Yilmazel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document