A low-cost solution to rural water disinfection

2006 ◽  
Vol 25 (3) ◽  
pp. 36-37
Author(s):  
C. Taflin
RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 4873-4882
Author(s):  
Gongyan Liu ◽  
Ruiquan Yu ◽  
Jing Jiang ◽  
Zhuang Ding ◽  
Jing Ma ◽  
...  

Point-of-use water disinfection by GA@AgNPs-LA-FP.


2007 ◽  
Vol 6 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Sarah A. Brownell ◽  
Alicia R. Chakrabarti ◽  
Forest M. Kaser ◽  
Lloyd G. Connelly ◽  
Rachel L. Peletz ◽  
...  

We describe a point-of-use (POU) ultraviolet (UV) disinfection technology, the UV Tube, which can be made with locally available resources around the world for under $50 US. Laboratory and field studies were conducted to characterize the UV Tube's performance when treating a flowrate of 5 L/min. Based on biological assays with MS2 coliphage, the UV Tube delivered an average fluence of 900±80 J/m2 (95% CI) in water with an absorption coefficient of 0.01 cm−1. The residence time distribution in the UV Tube was characterized as plug flow with dispersion (Peclet Number = 19.7) and a mean hydraulic residence time of 36 s. Undesirable compounds were leached or produced from UV Tubes constructed with unlined ABS, PVC, or a galvanized steel liner. Lining the PVC pipe with stainless steel, however, prevented production of regulated halogenated organics. A small field study in two rural communities in Baja California Sur demonstrated that the UV Tube reduced E. coli concentrations to less than 1/100 ml in 65 out of 70 samples. Based on these results, we conclude that the UV Tube is a promising technology for treating household drinking water at the point of use.


2020 ◽  
Author(s):  
Varsha Gautam ◽  
Krishan Pal ◽  
Narendra Kumar ◽  
Girijesh N. Pandey ◽  
B. Suthar ◽  
...  

Author(s):  
Cristina Ruales-Lonfat ◽  
Angélica Varón López ◽  
José Fernando Barona ◽  
Alejandro Moncayo-Lasso ◽  
Norberto Benítez Vásquez ◽  
...  

2014 ◽  
Vol 13 (2) ◽  
pp. 510-521 ◽  
Author(s):  
Bixiong Ye ◽  
Yuansheng Chen ◽  
Yonghua Li ◽  
Hairong Li ◽  
Linsheng Yang ◽  
...  

Two typical rural water utilities in Beijing, China were chosen to describe the principles and applications of water safety plans (WSP), to provide a methodological guide for the actual application and improve the quality of rural drinking water quality, and to establish an appropriate method for WSP applied in rural water supply. Hazards and hazardous events were identified and risk assessment was conducted for rural water supply systems. A total of 13 and 12 operational limits were defined for two utilities, respectively. The main risk factors that affect the water safety were identified in water sources, water processes, water disinfection systems and water utility management. The main control measures were strengthening the water source protection, monitoring the water treatment processes, establishing emergency mechanisms, improving chemical input and operating system management. WSP can be feasibly applied to the management of a rural water supply.


2014 ◽  
Vol 12 (3) ◽  
pp. 573-583 ◽  
Author(s):  
E. Roma ◽  
T. Bond ◽  
P. Jeffrey

Many scientific studies have suggested that point-of-use water treatment can improve water quality and reduce the risk of infectious diseases. Despite the ease of use and relatively low cost of such methods, experience shows the potential benefits derived from provision of such systems depend on recipients' acceptance of the technology and its sustained use. To date, few contributions have addressed the problem of user experience in the post-implementation phase. This can diagnose challenges, which undermine system longevity and its sustained use. A qualitative evaluation of two household water treatment systems, solar disinfection (SODIS) and chlorine tablets (Aquatabs), in three villages was conducted by using a diagnostic tool focusing on technology performance and experience. Cross-sectional surveys and in-depth interviews were used to investigate perceptions of involved stakeholders (users, implementers and local government). Results prove that economic and functional factors were significant in using SODIS, whilst perceptions of economic, taste and odour components were important in Aquatabs use. Conclusions relate to closing the gap between factors that technology implementers and users perceive as key to the sustained deployment of point-of-use disinfection technologies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Janika Lehtonen ◽  
Jukka Hassinen ◽  
Riina Honkanen ◽  
Avula Anil Kumar ◽  
Heli Viskari ◽  
...  

AbstractThe availability of microbially-safe drinking water is a challenge in many developing regions. Due to the well-known antibacterial effect of silver ions, materials used for their controlled release have been widely studied for point-of-use water disinfection. However, even if it is in principle known that chloride anions can suppress the antibacterial efficiency of silver, the majority of previous studies, surprisingly, have not focused on chloride concentrations relevant for freshwaters and thus for practical applications. Here, we prepared low-cost nanocellulose-aluminium oxyhydroxide nanocomposites functionalized with silver nanoparticles. Field samples obtained from Chennai, India were used as a guideline for choosing relevant chloride concentrations for the antibacterial studies, i.e., 10, 90, and 290 ppm. The antibacterial performance of the material against Escherichia coli and Bacillus subtilis was demonstrated and the influence of chloride concentration on the antibacterial effect was studied with E. coli. A 1 h contact time led to bacterial reductions of 5.6 log10, 2.9 log10, and 2.2 log10, respectively. This indicates that an increase of chloride concentration leads to a substantial reduction of antibacterial efficiency, even within chloride concentrations found in freshwaters. This work enables further insights for designing freshwater purification systems that utilize silver-releasing materials.


2020 ◽  
Vol 26 (5) ◽  
pp. 200437-0
Author(s):  
Mainak Bhattacharya ◽  
Koyel Bandyopadhyay ◽  
Anirban Gupta

Bacteriological contamination in drinking water is known to be responsible for the spread of various waterborne diseases. Although chlorine is frequently used as disinfectant in water treatment, low-cost disinfecting technologies in the villages of developing and under-developed countries are not yet successfully implemented. This study contributed in designing a simple and inexpensive water disinfection unit to produce chlorine from the naturally available dissolved chloride of groundwater by electrochlorination, using inert and cheap graphite electrodes. Laboratory-based experiments were performed in both batch and continuous flow reactors to study the effect of time, current, electro charge loading (ECL), and surface area of electrodes in chlorine generation and bacterial inactivation. Controlled experiments in continuous mode in the absence of chlorine further indicated the possibility of partial inactivation of bacteria under the influence of the electric field. Finally, a treatment unit with drilled anodes, and undrilled cathode electrodes, in continuous flow set-up was installed in four schools of four different villages in West Bengal, India. An average residual chlorine concentration and removal efficiency of total coliform in the designed systems were determined as 0.3 ± 0.07 mg/L, and 98.4% ± 1.6%, respectively.


2015 ◽  
Vol 14 (6) ◽  
pp. 1190-1196 ◽  
Author(s):  
Neel M. Makwana ◽  
Rachael Hazael ◽  
Paul F. McMillan ◽  
Jawwad A. Darr

Ceramic wafers prepared by a simple, low-cost method, are investigated for photocatalytic water disinfection. Heterojunction wafers were able to sustain the formation of charged species responsible for bacterial inactivation.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 601 ◽  
Author(s):  
Long Chen ◽  
Ameet Pinto ◽  
Akram N. Alshawabkeh

Unlike many other water disinfection methods, hydroxyl radicals (HO•) produced by the Fenton reaction (Fe2+/H2O2) can inactivate pathogens regardless of taxonomic identity of genetic potential and do not generate halogenated disinfection by-products. Hydrogen peroxide (H2O2) required for the process is typically electrogenerated using various carbonaceous materials as cathodes. However, high costs and necessary modifications to the cathodes still present a challenge to large-scale implementation. In this work, we use granular activated carbon (GAC) as a cathode to generate H2O2 for water disinfection through the electro-Fenton process. GAC is a low-cost amorphous carbon with abundant oxygen- and carbon-containing groups that are favored for oxygen reduction into H2O2. Results indicate that H2O2 production at the GAC cathode is higher with more GAC, lower pH, and smaller reactor volume. Through the addition of iron ions, the electrogenerated H2O2 is transformed into HO• that efficiently inactivated model pathogen (Escherichia coli) under various water chemistry conditions. Chick–Watson modeling results further showed the strong lethality of produced HO• from the electro-Fenton process. This inactivation coupled with high H2O2 yield, excellent reusability, and relatively low cost of GAC proves that GAC is a promising cathodic material for large-scale water disinfection.


Sign in / Sign up

Export Citation Format

Share Document