Optimization of silicon nanowire based field-effect pH sensor with back gate control

Author(s):  
Anran Gao ◽  
Pengfei Dai ◽  
Na Lu ◽  
Tie Li ◽  
Yuelin Wang
Author(s):  
Wan Amirah Basyarah Z.A. ◽  
M. Nuzaihan M.N. ◽  
M.K. Md Arshad ◽  
M.F.M. Fathil ◽  
Noor Azrina Haji Talik Sisin ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Sooraj Sanjay ◽  
Mainul Hossain ◽  
Ankit Rao ◽  
Navakanta Bhat

AbstractIon-sensitive field-effect transistors (ISFETs) have gained a lot of attention in recent times as compact, low-cost biosensors with fast response time and label-free detection. Dual gate ISFETs have been shown to enhance detection sensitivity beyond the Nernst limit of 59 mV pH−1 when the back gate dielectric is much thicker than the top dielectric. However, the thicker back-dielectric limits its application for ultrascaled point-of-care devices. In this work, we introduce and demonstrate a pH sensor, with WSe2(top)/MoS2(bottom) heterostructure based double gated ISFET. The proposed device is capable of surpassing the Nernst detection limit and uses thin high-k hafnium oxide as the gate oxide. The 2D atomic layered structure, combined with nanometer-thick top and bottom oxides, offers excellent scalability and linear response with a maximum sensitivity of 362 mV pH−1. We have also used technology computer-aided (TCAD) simulations to elucidate the underlying physics, namely back gate electric field screening through channel and interface charges due to the heterointerface. The proposed mechanism is independent of the dielectric thickness that makes miniaturization of these devices easier. We also demonstrate super-Nernstian behavior with the flipped MoS2(top)/WSe2(bottom) heterostructure ISFET. The results open up a new pathway of 2D heterostructure engineering as an excellent option for enhancing ISFET sensitivity beyond the Nernst limit, for the next-generation of label-free biosensors for single-molecular detection and point-of-care diagnostics.


2012 ◽  
Vol 11 (04) ◽  
pp. 1240011
Author(s):  
G. ROSAZ ◽  
B. SALEM ◽  
N. PAUC ◽  
P. GENTILE ◽  
A. POTIÉ ◽  
...  

Silicon nanowires (Si NWs) are promising candidates for field-effect transistor (FET) conduction channel. Planar configuration using a back gate is an easy way to study these devices. We demonstrate the possibility to build high performance FET using a simple silicidation process leading to high effective holes' mobility between 130 cm2⋅V-1⋅s-1 and 200 cm2⋅V-1⋅s-1 and good ION/IOFF ratio up to 105. Moreover we investigated the possibility to passivate the NWs using either a high-k dielectric layer or a thermal oxide shell around the NWs. This leads to a reduction of the hysteretic behavior during the gate voltage sweep from 30 V to 1 V depending on the material and the gate configuration.


2021 ◽  
Vol 17 ◽  
Author(s):  
Wan Amirah Basyarah Zainol Abidin ◽  
Mohammad Nuzaihan Md Nor ◽  
Mohd Khairuddin Md Arshad ◽  
Mohamad Faris Mohamad Fathil ◽  
Nor Azizah Parmin ◽  
...  

Background: Dengue is known as the most severe arboviral infection in the world that spread by Aedes aegypti. However, conventional and laboratory-based enzyme-linked immunosorbent assays (ELISA) are the present approached in detecting dengue virus (DENV), required skilled and well-trained personnel to operate. Therefore, the ultrasensitive and label-free technique of Silicon Nanowire (SiNW) biosensor was chosen for rapid detection of DENV. Methods: In this study, a SiNW field-effect transistor (FET) biosensor integrated with a back-gate of the low-doped p-type Silicon-on-insulator (SOI) wafer was fabricated through conventional photolithography and Inductively Coupled Plasma – Reactive Ion Etching (ICP-RIE) for Dengue Virus type-2 (DENV-2) DNA detection. The morphological characteristics of back-gated SiNW-FET were examined using a field-emission scanning electron microscope supported by the elemental analysis via energy-dispersive X-ray spectroscopy. Results and Discussion: A complementary (target) single-stranded s deoxyribonucleic acid (ssDNA) was recognized when the target DNA was hybridized with the probe DNA attached to SiNW surfaces. Based on the slope of the linear regression curve, the back-gated SiNW-FET biosensor demonstrated the sensitivity of 3.3 nAM-1 with a detection limit of 10 fM. Furthermore, the drain and back-gate voltages were also found to influence the SiNW conductance changed. Conclusion: Thus, the results obtained suggest that the back-gated SiNW-FET shows good stability in both biosensing applications and medical diagnosis throughout conventional photolithography method.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Jie Gu ◽  
Qingzhu Zhang ◽  
Zhenhua Wu ◽  
Jiaxin Yao ◽  
Zhaohao Zhang ◽  
...  

A 16-nm-Lg p-type Gate-all-around (GAA) silicon nanowire (Si NW) metal oxide semiconductor field effect transistor (MOSFET) was fabricated based on the mainstream bulk fin field-effect transistor (FinFET) technology. The temperature dependence of electrical characteristics for normal MOSFET as well as the quantum transport at cryogenic has been investigated systematically. We demonstrate a good gate-control ability and body effect immunity at cryogenic for the GAA Si NW MOSFETs and observe the transport of two-fold degenerate hole sub-bands in the nanowire (110) channel direction sub-band structure experimentally. In addition, the pronounced ballistic transport characteristics were demonstrated in the GAA Si NW MOSFET. Due to the existence of spacers for the typical MOSFET, the quantum interference was also successfully achieved at lower bias.


2017 ◽  
Vol 56 (12) ◽  
pp. 124001 ◽  
Author(s):  
Ryoongbin Lee ◽  
Dae Woong Kwon ◽  
Sihyun Kim ◽  
Sangwan Kim ◽  
Hyun-Sun Mo ◽  
...  

2018 ◽  
Vol 39 (5) ◽  
pp. 739-741
Author(s):  
Xin-Ran Nie ◽  
Min Zhang ◽  
Hao Zhu ◽  
Lin Chen ◽  
Qing-Qing Sun ◽  
...  

2016 ◽  
Vol 55 (6S1) ◽  
pp. 06GG01 ◽  
Author(s):  
Sihyun Kim ◽  
Dae Woong Kwon ◽  
Ryoongbin Lee ◽  
Dae Hwan Kim ◽  
Byung-Gook Park

Sign in / Sign up

Export Citation Format

Share Document