Femtomolar Dengue Virus Type-2 DNA Detection in Back-gated Silicon Nanowire Field-effect Transistor Biosensor

2021 ◽  
Vol 17 ◽  
Author(s):  
Wan Amirah Basyarah Zainol Abidin ◽  
Mohammad Nuzaihan Md Nor ◽  
Mohd Khairuddin Md Arshad ◽  
Mohamad Faris Mohamad Fathil ◽  
Nor Azizah Parmin ◽  
...  

Background: Dengue is known as the most severe arboviral infection in the world that spread by Aedes aegypti. However, conventional and laboratory-based enzyme-linked immunosorbent assays (ELISA) are the present approached in detecting dengue virus (DENV), required skilled and well-trained personnel to operate. Therefore, the ultrasensitive and label-free technique of Silicon Nanowire (SiNW) biosensor was chosen for rapid detection of DENV. Methods: In this study, a SiNW field-effect transistor (FET) biosensor integrated with a back-gate of the low-doped p-type Silicon-on-insulator (SOI) wafer was fabricated through conventional photolithography and Inductively Coupled Plasma – Reactive Ion Etching (ICP-RIE) for Dengue Virus type-2 (DENV-2) DNA detection. The morphological characteristics of back-gated SiNW-FET were examined using a field-emission scanning electron microscope supported by the elemental analysis via energy-dispersive X-ray spectroscopy. Results and Discussion: A complementary (target) single-stranded s deoxyribonucleic acid (ssDNA) was recognized when the target DNA was hybridized with the probe DNA attached to SiNW surfaces. Based on the slope of the linear regression curve, the back-gated SiNW-FET biosensor demonstrated the sensitivity of 3.3 nAM-1 with a detection limit of 10 fM. Furthermore, the drain and back-gate voltages were also found to influence the SiNW conductance changed. Conclusion: Thus, the results obtained suggest that the back-gated SiNW-FET shows good stability in both biosensing applications and medical diagnosis throughout conventional photolithography method.

2021 ◽  
Author(s):  
Wan Amirah Basyarah Z. A. ◽  
Mohammad Nuzaihan Md Nor ◽  
Mohd Khairudin Md Arshad ◽  
Mohamad Faris Mohamad Fathil ◽  
Aidil Shazereen Azlan ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


2013 ◽  
Vol 94 (11) ◽  
pp. 2437-2448 ◽  
Author(s):  
J. M. Carr ◽  
T. Kua ◽  
J. N. Clarke ◽  
J. K Calvert ◽  
J. R. Zebol ◽  
...  

Sphingosine kinase 1 (SphK1) is a lipid kinase with important roles including regulation of cell survival. We have previously shown reduced SphK1 activity in cells with an established dengue virus type-2 (DENV-2) infection. In this study, we examined the effect of alterations in SphK1 activity on DENV-2 replication and cell death and determined the mechanisms of the reduction in SphK1 activity. Chemical inhibition or overexpression of SphK1 after established DENV-2 infection had no effect on infectious DENV-2 production, although inhibition of SphK1 resulted in enhanced DENV-2-induced cell death. Reduced SphK1 activity was observed in multiple cell types, regardless of the ability of DENV-2 infection to be cytopathic, and was mediated by a post-translational mechanism. Unlike bovine viral diarrhea virus, where SphK1 activity is decreased by the NS3 protein, SphK1 activity was not affected by DENV-2 NS3 but, instead, was reduced by expression of the terminal 396 bases of the 3′ UTR of DENV-2 RNA. We have previously shown that eukaryotic elongation factor 1A (eEF1A) is a direct activator of SphK1 and here DENV-2 RNA co-localized and co-precipitated with eEF1A from infected cells. We propose that the reduction in SphK1 activity late in DENV-2-infected cells is a consequence of DENV-2 out-competing SphK1 for eEF1A binding and hijacking cellular eEF1A for its own replication strategy, rather than a specific host or virus-induced change in SphK1 to modulate viral replication. Nonetheless, reduced SphK1 activity may have important consequences for survival or death of the infected cell.


ACS Sensors ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 427-433 ◽  
Author(s):  
Xi Chen ◽  
Si Chen ◽  
Qitao Hu ◽  
Shi-Li Zhang ◽  
Paul Solomon ◽  
...  

2008 ◽  
Vol 1144 ◽  
Author(s):  
Pranav Garg ◽  
Yi Hong ◽  
Md. Mash-Hud Iqbal ◽  
Stephen J. Fonash

ABSTRACTRecently, we have experimentally demonstrated a very simply structured unipolar accumulation-type metal oxide semiconductor field effect transistor (AMOSFET) using grow-in-place silicon nanowires. The AMOSFET consists of a single doping type nanowire, metal source and drain contacts which are separated by a partially gated region. Despite its simple configuration, it is capable of high performance thereby offering the potential of a low manufacturing-cost transistor. Since the quality of the metal/semiconductor ohmic source and drain contacts impacts AMOSFET performance, we repot here on initial exploration of contact variations and of the impact of thermal process history. With process optimization, current on/off ratios of 106 and subthreshold swings of 70 mV/dec have been achieved with these simple devices


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Laura C. Laurella ◽  
Fernanda M. Frank ◽  
Andrea Sarquiz ◽  
María R. Alonso ◽  
Gustavo Giberti ◽  
...  

The aim of this study was to investigate the antiprotozoal and antiviral activities of four ArgentineanMikaniaspecies. The organic and aqueous extracts ofMikania micrantha, M. parodii, M. periplocifolia,andM. cordifoliawere tested onTrypanosoma cruziepimastigotes,Leishmania braziliensispromastigotes, and dengue virus type 2. The organic extract ofM. micranthawas the most active againstT. cruziandL. braziliensisexhibiting a growth inhibition of77.6±4.5% and84.9±6.1%, respectively, at a concentration of 10 μg/ml. The bioguided fractionation ofM. micranthaorganic extract led to the identification of two active fractions. The chromatographic profile and infrared analysis of these fractions revealed the presence of sesquiterpene lactones. None of the tested extracts were active against dengue virus type 2.


Sign in / Sign up

Export Citation Format

Share Document