Measuring waves and currents at the European marine energy centre tidal energy test site: Campaign specification, measurement methodologies and data exploitation

Author(s):  
Brian G. Sellar ◽  
Duncan R.J. Sutherland ◽  
David M. Ingram ◽  
Vengatesan Venugopal
Author(s):  
Douglas J. Keefe ◽  
Joseph Kozak

Ocean energy developments are appearing around the world including Scotland, Ireland, Wales, England, Australia, New Zealand, Japan, Korea, Norway, France Portugal, Spain, India, the United States, Canada and others. North America’s first tidal energy demonstration facility is in the Minas Passage of the Bay of Fundy, near Parrsboro, Nova Scotia, Canada. The Fundy Ocean Research Center for Energy (FORCE) is a non-profit institute that owns and operates the facility that offers developers, regulators, scientists and academics the opportunity to study the performance and interaction of instream tidal energy converters (usually referred to as TISECs but called “turbines” in this paper.) with one of the world’s most aggressive tidal regimes. FORCE provides a shared observation facility, submarine cables, grid connection, and environmental monitoring at its pre-approved test site. The site is well suited to testing, with water depths up to 45 meters at low tide, a sediment -free bedrock sea floor, straight flowing currents, and water speeds up to 5 meters per second (approximately 10 knots). FORCE will install 10.896km of double armored, 34.5kV submarine cable — one for each of its four berths. Electricity from the berths will be conditioned at FORCE’s own substation and delivered to the Provincial power grid by a 10 km overhead transmission line. There are four berth holders at present: Alstom Hydro Canada using Clean Current Power Systems Technology (Canada); Minas Basin Pulp and Power Co. Ltd. with technology partner Marine Current Turbines (UK); Nova Scotia Power Inc. with technology partner OpenHydro (Ireland) and Atlantis Resources Corporation, in partnership with Lockheed Martin and Irving Shipbuilding. In November 2009, NSPI with technology partner OpenHydro deployed the first commercial scale turbine at the FORCE site. The 1MW rated turbine was secured by a 400-tonne subsea gravity base fabricated in Nova Scotia. The intent of this paper is to provide an overview of FORCE to the international marine energy community during OMAE 2011 taking place in Rotterdam, Netherlands.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 672 ◽  
Author(s):  
Charles Greenwood ◽  
Arne Vogler ◽  
Vengatesan Venugopal

This study presents the variation in turbulence parameters derived from site measurements at a tidal energy test site. Measurements were made towards the southern end of the European Marine Energy Centre’s tidal energy test site at the Fall of Warness (Orkney, Scotland). Four bottom mounted divergent-beam Acoustic Doppler Current Profilers (ADCPs) were deployed at three locations over an area of 2 km by 1.4 km to assess the spatial and temporal variation in turbulence in the southern entrance to the channel. During the measurement campaign, average flood velocities of 2 ms−1 were recorded with maximum flow speeds of 3 ms−1 in the absence of significant wave activity. The velocity fluctuations and turbulence parameters show the presence of large turbulent structures at each location. The easternmost profiler located in the wake of a nearby headland during ebb tide, recorded flow shielding effects that reduced velocities to almost zero and produced large turbulence intensities. The depth-dependent analysis of turbulence parameters reveals large velocity variations with complex profiles that do not follow the standard smooth shear profile. Furthermore, turbulence parameters based on data collected from ADCPs deployed in a multi-carrier frame at the same location and time period, show significant differences. This shows a large sensitivity to the make and model of ADCPs with regards to turbulence. Turbulence integral length scales were calculated, and show eddies exceeding 30 m in size. Direct comparison of the length scales derived from the streamwise velocity component and along-beam velocities show very similar magnitudes and distributions with tidal phase.


Author(s):  
Jean-Baptiste Saulnier ◽  
Izan Le Crom

Located off the Guérande peninsula, SEM-REV is the French maritime facility dedicated to the testing of wave energy converters and related components. Lead by Ecole Centrale de Nantes through the LHEEA laboratory, its aim is to promote research alongside the development of new offshore technologies. To this end, the 1km2, grid-connected zone is equipped with a comprehensive instruments network sensing met-ocean processes and especially waves, with two identical directional Waverider buoys deployed on the site since 2009. For the design of moored floating structures and, a fortiori, floating marine energy converters, the knowledge of the main wave resource — for regular operation — but also extreme conditions — for moorings and device survivability — has to be as precise as possible. Also, the consideration of the multiple wave systems (swell, wind sea) making up the sea state is a key asset for the support of developers before and during the testing phase. To this end, a spectral partitioning algorithm has been implemented which enables the individual characterisation of wave systems, in particular that of their spectral peakedness which is especially addressed in this work. Peakedness has been shown to be strongly related to the groupiness of large waves and is defined here as the standard JONSWAP’s peak enhancement factor γ. Statistics related to this quantity are derived from the measurement network, with a particular focus on the extreme conditions reported on SEM-REV (Joachim storm).


2020 ◽  
Vol 8 (8) ◽  
pp. 553 ◽  
Author(s):  
Brian Polagye ◽  
James Joslin ◽  
Paul Murphy ◽  
Emma Cotter ◽  
Mitchell Scott ◽  
...  

Integrated instrumentation packages are an attractive option for environmental and ecological monitoring at marine energy sites, as they can support a range of sensors in a form factor compact enough for the operational constraints posed by energetic waves and currents. Here we present details of the architecture and performance for one such system—the Adaptable Monitoring Package—which supports active acoustic, passive acoustic, and optical sensing to quantify the physical environment and animal presence at marine energy sites. we describe cabled and autonomous deployments and contrast the relatively limited system capabilities in an autonomous operating mode with more expansive capabilities, including real-time data processing, afforded by shore power or in situ power harvesting from waves. Across these deployments, we describe sensor performance, outcomes for biological target classification algorithms using data from multibeam sonars and optical cameras, and the effectiveness of measures to limit biofouling and corrosion. On the basis of these experiences, we discuss the demonstrated requirements for integrated instrumentation, possible operational concepts for monitoring the environmental and ecological effects of marine energy converters using such systems, and the engineering trade-offs inherent in their development. Overall, we find that integrated instrumentation can provide powerful capabilities for observing rare events, managing the volume of data collected, and mitigating potential bias to marine animal behavior. These capabilities may be as relevant to the broader oceanographic community as they are to the emerging marine energy sector.


2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 9-18 ◽  
Author(s):  
H. Viehman ◽  
T. Boucher ◽  
A. Redden

The likelihood of fish encountering an MHK device, and therefore the risk posed to fish, depends largely on the natural distribution of fish at tidal energy development sites. In temperate locations, such as the Bay of Fundy, seasonal changes in the environment and fish assemblage may alter the likelihood of fish encounters with MHK devices. We examined two one-month hydroacoustic datasets collected in winter 2015 and summer 2016 by an upward-facing echosounder deployed at the Fundy Ocean Research Center for Energy test site in the Minas Passage. Fish density was higher and less variable in winter than in summer, likely due to the presence of migratory vs. overwintering fish. The vertical distribution of fish varied with sample period, diel stage, and tidal stage. The proportion of fish at MHK device depth was greater, but more variable, in summer than in winter. Encounter probability, or potential for spatial overlap of fish with an MHK device, was < 0.002 for winter and summer vertical distributions. More information on the distribution of fish (horizontal and vertical), species present, fish sensory and locomotory abilities, and nearfield behaviours in response to MHK devices is needed to improve our understanding of likely device effects on fish.


2018 ◽  
Author(s):  
Belinda Batten ◽  
◽  
Dan Hellin ◽  
◽  
◽  
...  

Author(s):  
Thomas Davey ◽  
Vengatesan Venugopal ◽  
David M. Ingram ◽  
Helen C. M. Smith

In order to conduct effective resource assessment for the marine energy industry the applied analysis techniques must be consistent and practicable. It is therefore important to establish the parameters of interest when characterising a sea state. A number of parameters for describing the shape of individual waves in the time-domain are examined. These parameters are used to characterise wave records from three selected sites: The European Marine Energy Centre (EMEC), UK; The Wave Hub test site, UK and the North Alwyn platform east of the Shetland Islands.


Author(s):  
S Walker ◽  
R Howell

Tidal and wave energy devices are often discussed as a future contributor to the UK’s energy mix. Indeed, marine energy resources are said to have the potential to supply up to 20 per cent of the nation’s electricity demand. However, these technologies are currently at the development stage and make no meaningful contribution to the national grid. A number of devices have been developed, but no single method has emerged as the leading technology. This paper aims to compare two promising devices, one wave device and one tidal device, and assess the life cycle properties of each. A life cycle assessment of the Oyster wave energy device was conducted as part of this study, and a comparison of this and the SeaGen marine current turbine was undertaken. In both cases a ‘cradle-to-grave’ assessment was carried out, calculating emissions from materials, fabrication, transport, installation, lifetime maintenance, and decommissioning (including recycling). The SeaGen tidal device was calculated to have an energy payback period of 14 months, and a CO2 payback period of 8 months. The equivalent figures for the Oyster device were 12 and 8 months, respectively. The respective energy and carbon intensities for the two devices were 214 kJ/kWh and 15 gCO2/kWh for the SeaGen and 236 kJ/kWh and 25 gCO2/kWh for the Oyster. The calculated intensities and payback periods are close to those of established wind turbine technologies, and low relative to the 400–1000 g CO2/kWh of typical fossil fuel generation. With further developments in construction and deployment efficiency these intensities are expected to fall, so the devices appear to have the potential to offer a viable contribution to the UK’s future energy mix.


Author(s):  
Emmanuel Osalusi ◽  
Jonathan Side ◽  
Robert Harris

Sign in / Sign up

Export Citation Format

Share Document