Low cost high energy yield solar module lines and its applications

Author(s):  
T. Soderstrom ◽  
Y. Yao ◽  
R. Grischke ◽  
M. Gragert ◽  
B. Demaurex ◽  
...  
MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2953-2965 ◽  
Author(s):  
Loucas Tsakalakos ◽  
David J. Smith ◽  
Joleyn E. Brewer ◽  
Holly A. Comanzo ◽  
Ching-Yeu Wei ◽  
...  

ABSTRACTThe enhancement of photovoltaic efficiency by incorporation of down-shifting phosphor materials in optically active and inactive regions of solar modules is presented. Thin film photovoltaic modules suffer from various optical losses, including front glass reflectance, thermalization loss of absorbed high energy photons, window layer absorption, and the loss of photons to scribe regions. There have been various efforts to improve the performance of solar modules by application of down-shifting (DS), down-converting, and up-converting materials systems. Here we show results towards the development of a low-cost phosphor film system tuned to the solar spectrum and specifically designed for CdTe thin film modules.


Author(s):  
Zhen-Liang Liao ◽  
Yu-Chun Peng ◽  
Yi-Kai Lin ◽  
Ching-Ying Chang ◽  
Pei-Hua Tsai ◽  
...  

2020 ◽  
Author(s):  
Marius Zehender ◽  
Simon Svatek ◽  
Myles Steiner ◽  
Ivan Garcia ◽  
Pablo Linares ◽  
...  

Abstract We demonstrate a novel multijunction architecture, the heterojunction bipolar transistor solar cell (HBTSC), which exhibits the performance of a double-junction solar cell in a more compact npn (or pnp) semiconductor structure. The HBTSC concept has the advantages of being a three-terminal device, such as low spectral sensitivity and high tolerance to non-optimal band gap energies, while it reduces the fabrication and operation complexity with respect to other multi-terminal devices because, for example, it can produce independent power extraction from the two junctions without the need for extra layers for their isolation or inter-connection. The top and bottom junctions in our proof-of-concept HBTSC prototype, which is made of epitaxial GaInP/GaAs, exhibit independent current-voltage characteristics under AM1.5G illumination, with respective open-circuit voltages of 1.33 and 0.95 V. The voltage difference between the two junctions is notable considering that they share a thin (< 600 nm) GaInP layer which contributes to the photogeneration of both junctions. This can be explained by a gradient in the minority carrier quasi-Fermi level within the base layer, which is compatible with a high fill factor. We also offer a technological solution for contacting the intermediate layer and study the effect of series resistance on the device performance. The HBTSC opens a new perspective in the understanding of multi-junction devices and it is an excellent candidate for the application of low-cost fabrication techniques, and for the implementation of III-V on silicon tandems with parallel/series interconnection for high energy yield.


2008 ◽  
Author(s):  
Kai W. Jansen ◽  
Anthony Varvar ◽  
Edward Twesme ◽  
Troy Berens ◽  
Neelkanth G. Dhere

2020 ◽  
Vol 80 (2) ◽  
pp. 133-146
Author(s):  
L Zhang ◽  
Z Zhang ◽  
J Cao ◽  
Y Luo ◽  
Z Li

Grain maize production exceeds the demand for grain maize in China. Methods for harvesting good-quality silage maize urgently need a theoretical basis and reference data in order to ensure its benefits to farmers. However, research on silage maize is limited, and very few studies have focused on its energetic value and quality. Here, we calibrated the CERES-Maize model for 24 cultivars with 93 field experiments and then performed a long-term (1980-2017) simulation to optimize genotype-environment-management (G-E-M) interactions in the 4 main agroecological zones across China. We found that CERES-Maize could reproduce the growth and development of maize well under various management and weather conditions with a phenology bias of <5 d and biomass relative root mean square error values of <5%. The simulated results showed that sowing long-growth-cycle cultivars approximately 10 d in advance could yield good-quality silage. The optimal sowing dates (from late May to July) and harvest dates (from early October to mid-November) gradually became later from north to south. A high-energy yield was expected when sowing at an early date and/or with late-maturing cultivars. We found that Northeast China and the North China Plain were potential silage maize growing areas, although these areas experienced a medium or even high frost risk. Southwestern maize experienced a low risk level, but the low soil fertility limited the attainable yield. The results of this paper provide information for designing an optimal G×E×M strategy to ensure silage maize production in the Chinese Maize Belt.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 357
Author(s):  
Pedro Moura ◽  
José Ignacio Moreno ◽  
Gregorio López López ◽  
Manuel Alvarez-Campana

University campuses are normally constituted of large buildings responsible for high energy demand, and are also important as demonstration sites for new technologies and systems. This paper presents the results of achieving energy sustainability in a testbed composed of a set of four buildings that constitute the Telecommunications Engineering School of the Universidad Politécnica de Madrid. In the paper, after characterizing the consumption of university buildings for a complete year, different options to achieve more sustainable use of energy are presented, considering the integration of renewable generation sources, namely photovoltaic generation, and monitoring and controlling electricity demand. To ensure the implementation of the desired monitoring and control, an internet of things (IoT) platform based on wireless sensor network (WSN) infrastructure was designed and installed. Such a platform supports a smart system to control the heating, ventilation, and air conditioning (HVAC) and lighting systems in buildings. Furthermore, the paper presents the developed IoT-based platform, as well as the implemented services. As a result, the paper illustrates how providing old existing buildings with the appropriate technology can contribute to the objective of transforming such buildings into nearly zero-energy buildings (nZEB) at a low cost.


Sign in / Sign up

Export Citation Format

Share Document