Microbend gratings fabricated in glass substrates via direct writing with near-infrared femtosecond pulses

Author(s):  
Jung-Ho Chung ◽  
Yu Gu ◽  
James G. Fujimoto
Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3356
Author(s):  
Mizue Mizoshiri ◽  
Kyohei Yoshidomi ◽  
Namsrai Darkhanbaatar ◽  
Evgenia M. Khairullina ◽  
Ilya I. Tumkin

Direct writing of cobalt/cobalt oxide composites has attracted attention for its potential use in catalysts and detectors in microsensors. In this study, cobalt-based composite patterns were selectively formed on glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET) substrates via the femtosecond laser reductive sintering of Co3O4 nanoparticles in an ambient atmosphere. A Co3O4 nanoparticle ink, including the nanoparticles, ethylene glycol as a reductant, and polyvinylpyrrolidone as a dispersant, was spin-coated onto the substrates. Near-infrared femtosecond laser pulses were then focused and scanned across the ink films to form the patterns. The non-sintered nanoparticles were subsequently removed from the substrate. The resulting sintered patterns were found to be made up of Co/CoO composites on the glass substrates, utilizing various pulse energies and scanning speeds, and the Co/CoO/Co3O4 composites were fabricated on both the PEN and PET substrates. These results suggest that the polymer substrates with low thermal resistance react with the ink during the reductive sintering process and oxidize the patterns more easily compared with the patterns on the glass substrates. Such a direct writing technique of cobalt/cobalt oxide composites is useful for the spatially selective printing of catalysts and detectors in functional microsensors.


2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


2021 ◽  
Vol 21 (12) ◽  
pp. 6048-6053
Author(s):  
Qi Wang ◽  
Mingwei Li ◽  
Yao Xie ◽  
Yun Ou ◽  
Weiping Zhou

With the rapid development of the electronics industry, electronic products based on silicon and glass substrates electronic products will gradually be unable to meet the rising demand. Flexibility, environmental protection, and low costs are important for the development of electronic products. In this study, an efficient and low-cost method for preparing silver electrode structures by direct writing on paper has been demonstrated. Based on this method, a flexible paper-based sensor was prepared. The liquid printing ink used mainly comprises a precursor liquid without pre-prepared nanomaterials. The precursor liquid is transparent with good fluidity. Simple direct writing technology was used to write on the paper substrate using the precursor ink. When the direct-writing paper substrate was subsequently heated, silver nanostructures precipitated from the precursor liquid ink onto the paper substrate. The effect of different temperatures on the formation of the silver nanostructures and the influence of different direct writing processes on the structures were studied. Finally, a paper-based flexible sensor was prepared for finger-bending signal detection. The method is simple to operate and low in cost and can be used for the preparation of environment-friendly paper-based devices.


2020 ◽  
Vol 220 ◽  
pp. 01019
Author(s):  
Elvira Fazalova ◽  
Konstantin Kochunov ◽  
Elena Bodyago ◽  
Georgii Konoplev ◽  
Nikolay Mukhin ◽  
...  

Optical and photoelectric properties of poly (ohydroxyamide) (PHA) sensitized with zinc phthalocyanines were investigated in the visible and near infrared spectral regions. The structures were deposited on glass substrates by centrifugation and subsequent drying of a PHA film without thermal annealing. Optical spectra revealed characteristic absorption peaks of phthalocyanine in the longer wavelength region at 620-640 nm and 680-700 nm; absorption of the PHA matrix monotonously increases to the shorter wavelengths starting from 700 nm. Measurements of the photocurrent under irradiation with a high-power LED at a wavelength 630 nm showed photoconductivity related to the organic dye; photoconductivity also was observed while irradiated at 540 nm, presumably due to the absorption of PHA matrix. For non-sensitized (dye-free) PHA films no detectable photocurrents were produced by 630 nm irradiation. It was shown that introducing of phthalocyanines significantly improves optical absorption and photoconductivity of PHA thin films at the wavelengths, where the maximum in the spectral distribution of solar radiation lies. It was concluded that phthalocyanine-sensitized PHA has the potential use as a photosensitive organic material for solar applications, for example in developing composite organicinorganic structures with ferroelectrics.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 401 ◽  
Author(s):  
Mizue Mizoshiri ◽  
Keiko Aoyama ◽  
Akira Uetsuki ◽  
Tomoji Ohishi

We have fabricated Cu-based micropatterns in an ambient environment using femtosecond laser direct writing to reduce a glyoxylic acid Cu complex spin-coated onto a glass substrate. To do this, we scanned a train of focused femtosecond laser pulses over the complex film in air, following which the non-irradiated complex was removed by rinsing the substrates with ethanol. A minimum line width of 6.1 µm was obtained at a laser-pulse energy of 0.156 nJ and scanning speeds of 500 and 1000 µm/s. This line width is significantly smaller than that obtained in previous work using a CO2 laser. In addition, the lines are electrically conducting. However, the minimum resistivity of the line pattern was 2.43 × 10−6 Ω·m, which is ~10 times greater than that of the pattern formed using the CO2 laser. An X-ray diffraction analysis suggests that the balance between reduction and re-oxidation of the glyoxylic acid Cu complex determines the nature of the highly reduced Cu patterns in the ambient air.


2010 ◽  
Vol 75 ◽  
pp. 25-30
Author(s):  
Pia C. Lansåker ◽  
Klas Gunnarsson ◽  
Arne Roos ◽  
Gunnar A. Niklasson ◽  
Claes Goran Granqvist

Thin films of Au were made by sputter deposition onto glass substrates with and without transparent and electrically conducting layers of SnO2:In. The Au films were up to ~11 nm in thickness and covered the range for thin film growth from discrete islands, via large scale coalescence and formation of a meandering conducting network, to the formation of a more or less “holey” film. Scanning electron microscopy and atomic force microscopy showed that the SnO2:In films were considerably rougher than the glass itself. This roughness influenced the Au film formation so that large scale coalescence set in at a somewhat larger thickness for films on SnO2:In than on glass. Measurements of spectral optical transmittance and electrical resistance could be reconciled with impeded Au film formation on the SnO2:In layer, leading to pronounced “plateaus” in the near infrared optical properties for Au films on SnO2:In and an accompanying change from such two-layer films having a lower resistance than the single gold film at thicknesses below large scale coalescence to the opposite behavior for larger film thicknesses.


Small ◽  
2018 ◽  
Vol 14 (44) ◽  
pp. 1803143 ◽  
Author(s):  
Yihe Huang ◽  
Lei Zeng ◽  
Chongguang Liu ◽  
Desen Zeng ◽  
Zhu Liu ◽  
...  

2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


Sign in / Sign up

Export Citation Format

Share Document