A 77GHz CMOS VCO with 11.3GHz tuning range, 6dBm output power, and competitive phase noise in 65nm bulk CMOS

Author(s):  
Vishal P. Trivedi ◽  
Kun-Hin To ◽  
W. Margaret Huang
Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2928
Author(s):  
Hsuan-Ling Kao

This study presents a voltage-controlled oscillator (VCO) in a cross-coupled pair configuration using a multi-tapped switched inductor with two switch-loaded transformers in 0.5 µm GaN technology. Two switch-loaded transformers are placed at the inner and outer portions of the multi-tapped inductor. All the switches are turned off to obtain the lowest sub-band. The outer transformer with three pairs of switches is turned on alternately to provide three sub-band modes. A pair of switches at the inner transformer provide a high-frequency band. Two switch-loaded transformers are turned on to provide the highest sub-band. Six modes are selected to provide a wide tuning range. The frequency tuning range (FTR) of the VCO is 27.8% from 3.81 GHz to 8.04 GHz with a varactor voltage from 13 V to 22 V. At a 1 MHz frequency offset from the carrier frequency of 4.27 GHz, the peak phase noise is −119.17 dBc/Hz. At a power supply of 12 V, the output power of the carrier at 4.27 GHz is 20.9 dBm. The figure of merit is −186.93 dB because the VCO exhibits a high output power, low phase noise, and wide FTR. To the best of the author’s knowledge, the FTR in VCOs made of GaN-based high electron mobility transistors is the widest reported thus far.


2019 ◽  
Vol 28 (12) ◽  
pp. 2050140
Author(s):  
Weiwei Cheng ◽  
Xing Quan ◽  
Jiang Luo ◽  
Guodong Su

This paper proposes a 217.6–227-GHz signal generator with injection locking technique in 65-nm CMOS process. The injection locking technique is exploited to synchronize the phases of the two individual voltage control oscillators (VCOs) and improve the output power. The phase noise of the proposed signal generator is improved. The full-layout electromagnetic (EM) simulation in collaboration with the post-layout simulation is utilized to verify the proposed signal generator. The simulation results show that the frequency tuning range is 9.4[Formula: see text]GHz, and the output power is larger than [Formula: see text]14.25[Formula: see text]dBm. The phase noise at 1[Formula: see text]MHz off the carrier is better than [Formula: see text]92.12[Formula: see text]dBc/Hz. The signal generator occupies a compact silicon area of 0.23[Formula: see text]mm2 including all testing pads.


Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


2015 ◽  
Vol 9 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Alessandro Cazzorla ◽  
Paola Farinelli ◽  
Laura Urbani ◽  
Fabrizio Cacciamani ◽  
Luca Pelliccia ◽  
...  

This paper presents the modeling, manufacturing, and testing of a micro-electromechanical system (MEMS)-based LC tank resonator suitable for low phase-noise voltage-controlled oscillators (VCOs). The device is based on a variable MEMS varactor in series with an inductive coplanar waveguide line. Two additional parallel stubs controlled by two ohmic MEMS switches have been introduced in order to increase the resonator tunability. The device was fabricated using the FBK-irst MEMS process on high resistivity (HR) silicon substrate. Samples were manufactured with and without a 0-level quartz cap. The radio frequency characterization of the devices without 0-level cap has shown a continuous tuning range of 11.7% and a quality factor in the range of 33–38. The repeatability was also tested on four samples and the continuous tuning is 11.7 ± 2%. Experimental results on the device with a 0-level cap, show a frequency downshift of about 200 MHz and a degradation of the quality factor of about 20%. This is, most likely, due to the polymeric sealing ring as well as to a contamination of the ohmic contacts introduced by the capping procedure. A preliminary design of a MEMS-based VCO was performed using Advanced Design System and a hardwired prototype was fabricated on Surface Mount Technology on RO4350 laminate. The prototype was tested resulting in a resonance frequency of 5 GHz with a phase noise of −105 and −126 dBc at 100 KHz and 1 MHz, respectively, and a measured output power of −1 dBm.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750184 ◽  
Author(s):  
Qiuzhen Wan ◽  
Jun Dong ◽  
Hui Zhou ◽  
Fei Yu

In this paper, a very low power modified current-reused quadrature voltage-controlled oscillator (QVCO) is proposed with the back-gate coupling technique for the quadrature signal generation. By stacking switching transistors in series like a cascode, the modified current-reused QVCO can be constructed in a totem-pole manner to reuse the dc biasing current and lower the power consumption. By utilizing the back-gates of switching transistors as coupling terminals to achieve the quadrature outputs, the back-gate coupled QVCO improves the phase noise and reduces the power consumption compared to the conventional coupling transistor based topology. Together with the modified current-reuse and back-gate coupling techniques, the proposed QVCO can operate at reduced supply voltage and power consumption while maintaining remarkable circuit performance in terms of low phase noise and wide tuning range. With a dc power of 1.6[Formula: see text]mW under a 0.8[Formula: see text]V supply voltage, the simulation results show the tuning range of the QVCO is from 2.36 to 3.04[Formula: see text]GHz as the tuning voltage is varied from 0.8 to 0.0[Formula: see text]V. The phase noise is [Formula: see text]118.3[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset frequency from the carrier frequency of 2.36[Formula: see text]GHz and the corresponding figure-of-merit of the QVCO is [Formula: see text]183.7[Formula: see text]dBc/Hz.


Sign in / Sign up

Export Citation Format

Share Document