Multi-robot control for flexible fixtureless assembly of flexible sheet metal auto body parts

Author(s):  
W. Nguyen ◽  
J.K. Mills
2014 ◽  
Vol 34 (3) ◽  
pp. 296-302 ◽  
Author(s):  
Yanfeng Xing ◽  
Yansong Wang

Purpose – The purpose of this paper is to propose a new assembly variation analysis model to analyze assembly variation for sheet metal parts. The main focus is to analyze assembly processes based on the method of power balance. Design/methodology/approach – Starting with issues in assembly variation analysis, the review shows the critical aspects of tolerance analysis. The method of influence coefficient (MIC) cannot accurately analyze the relationship between part variations and assembly variations, as the welding point is not a point but a small area. Therefore, new sensitivity matrices are generated based on the method of power balance. Findings – Here two cases illustrate the processes of assembly variation analysis, and the results indicate that new method has higher accuracy than the MIC. Research limitations/implications – This study is limited to assembly variation analysis for sheet metal parts, which can be used in auto-body and airplane body. Originality/value – This paper provides a new assembly variation analysis based on the method of power balance.


Manufacturing ◽  
2002 ◽  
Author(s):  
Jun Lian ◽  
Zhongqin Lin ◽  
Fusheng Yao ◽  
Xinmin Lai

In the assembly process of auto-body, variations in the geometrical dimensions of sheet metal parts and fixtures are inevitable. These variations accumulate through the multi-station assembly process to form the dimensional variations of the final products. Compared with the assembly of rigid parts, the assembly process of the elastic parts is more complex because the variation accumulation patterns rely much on the variations of fixture, jointing methods and mechanical deformation. This paper aims at analyzing the variation transformation mechanism and accumulation characteristics for the assembly of sheet metal parts based on the analysis of dimensional coordination relations among parts and fixtures. Finite element method (FEM) and Monte-Carlo Simulation (MCS) were used to analyze the effect of jointing contact on variation transformation, while a state equation was developed to describe the variation accumulation mechanism. The result of the analysis indicates that the main characteristics of elastic assembly jointing are the overlap jointing methods and elastic contacts action. The fact that the variation transform coefficients (VTC) are variable makes the assembly variation distribution Non-Gaussian even if the dimension variation of parts is Gaussian distribution. The analysis conclusions have potential value for more reasonable tolerance synthesis of elastic parts assembly.


2019 ◽  
Vol 6 ◽  
pp. 16
Author(s):  
Alexander Horn ◽  
Marion Merklein

Today, manufacturing of structural car body parts faces several challenges, like forming accuracy, passenger safety and lightweight design. One possibility to fulfill these partially rivalling demands is the application of hot stamped components. The combination of hot forming and in-die quenching reduces not only springback, but also results in tensile strengths of more than 1500 MPa. Besides conventional hot stamping, the process can be adapted to manufacture parts with tailored properties. One of the biggest issues of these state-of-the-art processes is the formation of extensive transition zones due to heat transfer. A promising approach to adjust the mechanical properties with a minimized transition zone is tailored carburization of sheet metal. Therefore, the parts are locally coated with graphite, heat treated and subsequently quenched. In this work, the time variant process of carbon diffusion is investigated. Sheets with two different thicknesses are carburized and quenched. The resulting mechanical properties are analyzed using uniaxial tensile tests and microhardness measurements. On this basis, a process window is identified. Furthermore, the applicability of EDX and WDX analysis for the measurement of carbon concentration is investigated within this work.


2018 ◽  
Vol 190 ◽  
pp. 08004 ◽  
Author(s):  
Alexander Horn ◽  
Marion Merklein

Today’s manufacturing of structural car body parts faces several challenges, like forming accuracy and passenger safety. Besides these two requirements, lightweight design plays an important role. One possibility to fulfill these partially rivalling demands is the application of hot stamped parts. The combination of hot forming and in die quenching reduces not only springback, but also results in tensile strengths of up to 1500 MPa. This makes a simultaneous reduction of sheet thickness and therefore weight reduction possible. Further development enabled a tailored adjustment of mechanical properties, for example by applying different cooling conditions along the parts. One of the biggest issues of these state of the art processes is the formation of a transition zone due to heat transfer. A promising approach to adjust the mechanical properties with a minimized transition zone is the carburization of sheet metal. Therefore, the parts are coated with graphite, heat treated and subsequently quenched. In this work, the time variant process of carbon diffusion is investigated. Sheets with two different thicknesses are carburized and quenched. The resulting mechanical properties are analyzed using uniaxial tensile tests and microhardness measurements. The results are correlated with the carbon content measured by EDX-analysis.


Robotica ◽  
2004 ◽  
Vol 22 (6) ◽  
pp. 661-679 ◽  
Author(s):  
J. Z. Pan ◽  
R. V. Patel

Sophisticated robotic applications require systems to be reconfigurable at the system level. Aiming at this requirement, this paper presents the design and implementation of a software architecture for a reconfigurable real-time multi-processing system for multi-robot control. The system is partitioned into loosely coupled function units and the data modules manipulated by the function units. Modularized and unified structures of the sub-controllers and controller processes are designed and constructed. All the controller processes run autonomously and intra-sub-controller information exchange is realized by shared data modules that serve as a data repository in the sub-controller. The dynamic data-management processes are responsible for data exchange among sub-controllers and across the computer network. Among sub-controllers there is no explicit temporal synchronization and the data dependencies are maintained by using datum-based synchronization. The hardware driver is constructed as a two-layered system to facilitate adaptation to various robotic hardware systems. A series of effective schemes for software fault detection, fault anticipation and fault termination are accomplished to improve run-time safety. The system is implemented cost-effectively on a QNX real-time operating system (RTOS) based system with a complete PC architecture, and experimentally validated successfully on an experimental dual-arm test-bed. The results indicate that the architectural design and implementation are well suited for advanced application tasks.


Sign in / Sign up

Export Citation Format

Share Document