Agent based requirements evolution over the Internet

Author(s):  
C. Chang ◽  
L. Cai
Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 809
Author(s):  
Pawel Sobkowicz ◽  
Antoni Sobkowicz

Background: A realistic description of the social processes leading to the increasing reluctance to various forms of vaccination is a very challenging task. This is due to the complexity of the psychological and social mechanisms determining the positioning of individuals and groups against vaccination and associated activities. Understanding the role played by social media and the Internet in the current spread of the anti-vaccination (AV) movement is of crucial importance. Methods: We present novel, long-term Big Data analyses of Internet activity connected with the AV movement for such different societies as the US and Poland. The datasets we analyzed cover multiyear periods preceding the COVID-19 pandemic, documenting the behavior of vaccine related Internet activity with high temporal resolution. To understand the empirical observations, in particular the mechanism driving the peaks of AV activity, we propose an Agent Based Model (ABM) of the AV movement. The model includes the interplay between multiple driving factors: contacts with medical practitioners and public vaccination campaigns, interpersonal communication, and the influence of the infosphere (social networks, WEB pages, user comments, etc.). The model takes into account the difference between the rational approach of the pro-vaccination information providers and the largely emotional appeal of anti-vaccination propaganda. Results: The datasets studied show the presence of short-lived, high intensity activity peaks, much higher than the low activity background. The peaks are seemingly random in size and time separation. Such behavior strongly suggests a nonlinear nature for the social interactions driving the AV movement instead of the slow, gradual growth typical of linear processes. The ABM simulations reproduce the observed temporal behavior of the AV interest very closely. For a range of parameters, the simulations result in a relatively small fraction of people refusing vaccination, but a slight change in critical parameters (such as willingness to post anti-vaccination information) may lead to a catastrophic breakdown of vaccination support in the model society, due to nonlinear feedback effects. The model allows the effectiveness of strategies combating the anti-vaccination movement to be studied. An increase in intensity of standard pro-vaccination communications by government agencies and medical personnel is found to have little effect. On the other hand, focused campaigns using the Internet and social media and copying the highly emotional and narrative-focused format used by the anti-vaccination activists can diminish the AV influence. Similar effects result from censoring and taking down anti-vaccination communications by social media platforms. The benefit of such tactics might, however, be offset by their social cost, for example, the increased polarization and potential to exploit it for political goals, or increased ‘persecution’ and ‘martyrdom’ tropes.


Author(s):  
Raj Veeramani ◽  
Narayanan Viswanathan ◽  
Shailesh M. Joshi

Abstract New approaches for decision making are emerging to support the use of the Internet for supply-web interactions in the manufacturing industry. In this paper, we discuss one such paradigm, namely similarity-based decision support. It recognizes that knowledge of similar experiences can support rapid and effective decision making in various forms of supply-web interactions. We illustrate this approach using two prototype systems, WebScout (an agent-based system for customer–supplier matchmaking in the job-shop machining industry context) and TOME (Treasury of Manufacturing Experiences — an Intranet application to aid manufacturability assessment in foundries).


2020 ◽  
Vol 24 (5) ◽  
pp. 82-90
Author(s):  
A. Mikryukov ◽  
V. M. Trembach ◽  
A. V. Danilov

Purpose of research. The aim of the research is to form modules of organizational and technical systems (OTS) using a cognitive approach to solve problems of adaptation of cyberphysical systems. Currently, there is a rapid development of elements of the Internet of things. New tasks related to self-organization and adaptation in a rapidly changing external environment are brought to the fore. These tasks occur when new elements appear in the telecommunications computer network, they fail, change the mode, new tasks occur, etc. To work out these tasks, the possibilities of approaches to support and decision-making such as situational, cognitive, and semiotic are considered. The authors consider the cognitive approach in more detail. Within the framework of the cognitive paradigm, the article describes the use of the cognitive approach for solving problems of adaptation of cyberphysical systems. To solve this problem on the basis of an agent-based approach, the structure of a cyberphysical system with the possibility of adaptation is presented and the functions of its agents are described. The main stages of solving problems of adaptation of cyberphysical systems are presented. An adaptation algorithm using the planning mechanism is presented. The demo example shows a knowledge base for solving the problem of adapting cyberphysical systems using a cognitive planning mechanism.Materials and methods of research. New approaches and methods are required to address adaptation issues in planning. The cognitive approach is one of the developing directions in solving many problems of the Internet of things. One of these tasks is the ability to adapt OTS modules in a rapidly changing external environment based on the planning mechanism. To solve the planning problem, we use the algorithm described by Aristotle more than 2,350 years ago and implemented in the GPS program. This algorithm can be considered the first description of the cognitive mechanism that a person uses. The knowledge base uses an integrated approach to knowledge representation. When developing OTS modules, an agent-based approach was used to solve the problem of adaptation.Results. The existing and developing approaches and methods for decision support and decision-making are considered for decisionmaking in newly emerging situations in OTS modules. The main provisions of such significant approaches as situational, cognitive and semiotic are presented. A cognitive approach to the adaptation of intelligent systems is proposed. The solution of the problem of adaptation of cyberphysical systems is considered within the framework of the cognitive paradigm. The structure of a cyberphysical system capable of solving adaptation problems is shown. The functions of OTS modules based on agent-oriented technology are described. A description of the adaptation algorithm using the cognitive planning mechanism is given. The main stages of solving problems of adaptation of cyberphysical systems are presented. A demo example of solving the problem of adaptation by a cyberphysical system-a cooking robot – is shown.Conclusion. Using the modular architecture of an intelligent system allows you to solve many problems. One of these tasks is to configure elements of the Internet of things when they deviate from their main function. The planning mechanisms proposed for parametric adaptation can be repeatedly applied in OTS modules as separate agents. This approach is relevant for elements of the Internet of things. In the case of expanding the functionality of the OTS modules of Internet of things, it is advisable to apply machine learning with fixing the results in the knowledge base of planning agents.


Author(s):  
Raja Al-Jaljouli ◽  
Jemal H. Abawajy

E-negotiation handles negotiation over the Internet without human supervision and has shown effectiveness in concluding verifiable and more favorable agreements in a reasonably short time. In this chapter, the authors discuss the negotiation system and its components with particular emphasis on negotiation strategies. A negotiation strategy defines strategic tactics, which advise on the proper action to select from a set of possible actions that optimizes negotiation outcomes. A strategy should integrate negotiation goals and reactive attitudes. Usually, a fixed strategy is implemented during the course of negotiation regardless of significant decision-making factors including market status, opponent’s profile, or eagerness for a negotiated goods/service. The chapter presents the main negotiation strategies and outlines the different decision-making factors that should be considered. A strategy uses a utility function to evaluate the offer of an opponent and advises on the generation of a counter offer or the best interaction. The authors finally discuss different utility functions presented in the literature.


Author(s):  
Sheng-Uei Guan

An emerging outcome of the popularization of the Internet are electronic commerce and payment systems, which present great opportunities for businesses, reduce transaction costs, and provide faster transaction times. More research has been conducted with new technologies like mobile Internet used by business models (Baek & Hong, 2003). However, before using the Internet, it is essential to provide security in transferring monetary value over the Internet. A number of protocols have been proposed for these secure payment systems, including NetBill, NetCheque, Open Market, iKP, Millicent, SET (Sherift, 1998), E-Cash (Brands, 1995), NetCash, CAFÉ (Mjolsnes, 1997), EMV cards (Khu-Smith & Mitchell, 2002), etc. These systems are designed to meet diverse requirements, each with particular attributes. Automation and intelligence is another issue that poses challenges in the development of e-commerce. Agent technology has been incorporated into the area of e-commerce to provide automation and intelligence for the e-trade process. An agent is a software program capable of accomplishing tasks autonomously on behalf of its user. Agents must provide trustworthy consistency and fault tolerance to avoid eavesdropping and fraud. Also, agents should have roaming capability so as to extend their capability well beyond the limitations of owners’ computers. To meet these requirements, this chapter will discuss some related components under the SAFER (Secure Agent Fabrication, Evolution, and Roaming) architecture (Zhu & Guan, 2000) and propose an agent-based payment scheme for SAFER. Different types of electronic payment systems have been developed to meet its diverse requirements, which generally include integrity, authorization, confidentiality, availability, and reliability for security requirements (Asokan, 1997). Payment systems can be classified in a variety of ways according to their characteristics (Dahab & Ferreira, 1998), such as the exchange model (cash-like, check-like, or hybrid), central authority contact (online or offline), hardware requirements (specific or general), payment amounts (micropayment), etc. Among the available payment schemes in the market, E-Cash is one of the best in terms of security, flexibility, and full anonymity. E-Cash is a cash-like online system that uses electronic coins as tokens. E-Cash has unique advantages, such as flexibility, integrity, and full anonymity that cannot be found in electronic check and credit card based systems. It uses cryptographic techniques to provide full anonymity. The agent-based payment scheme for SAFER adopts some similar principles and concepts of E-Cash.


2009 ◽  
pp. 822-828
Author(s):  
Sheng-Uei Guan

An emerging outcome of the popularization of the Internet is the electronic commerce and payment systems, which present great opportunities for businesses, reduce transaction costs, and provide faster transaction time. Research has been conducted with new technologies, like mobile Internet used by business models (Baek & Hong, 2003). However, before using the Internet, it is essential to provide security in transferring monetary value over the Internet. Quite a number of protocols have been proposed for these secure payment systems, including NetBill, NetCheque, Open Market, iKP, Millicent, SET (Sherift & Serhrouchni, 1998), ECash (Brands, 1995), NetCash, CAFÉ (Mjolsnes & Michelson, 1997), EMV cards (Khu-Smith & Mitchell, 2002), and so forth. These systems are designed to meet diverse requirements, each with particular attributes. Automation and intelligence is another issue that poses challenges in the development of e-commerce. Agent technology has been incorporated into the area of e-commerce to provide automation and intelligence for the e-trade process. Agent is a software program, which is capable of accomplishing tasks autonomously on behalf of its user. Agents must provide highly trustworthy consistency and fault tolerance to avoid eavesdropping and fraud. Also, they should have roaming capability so as to extend their capabilities well beyond the limitations of owners’ computers. This article will discuss some related components under the Secure Agent Fabrication, Evolution, and Roaming (SAFER) architecture (Guan & Hua, 2003; Guan & Yang, 2004; Guan & Zhu, 2002; Ng, Guan, & Zhu, 2002; Zhu, Guan, Yang, & Ko, 2000) and propose an agent-based payment scheme for SAFER. Different types of electronic payment systems have been developed to meet their diverse requirements, which generally include integrity, authorization, confidentiality, availability, and reliability for security requirements (Asokan & Johnson, 1997). Payment systems can be classi- fied in a variety of ways according to their characteristics (Dahab & Ferreira, 1998), such as the exchange model (cash like, check like or hybrid), central authority contact (online or offline), hardware requirements (specific or general), payment amount (micropayment), and so forth. Among all the available payment schemes in the market, e-cash is one of the best in terms of security, flexibility, and full anonymity. E-cash is a cash-like online system that uses electronic coins as tokens. E-cash has its unique advantages, such as flexibility, integrity, and full anonymity that cannot be found in electronic check and credit card-based systems. It uses cryptographic techniques to provide full anonymity. The agent based payment scheme for SAFER adopts some similar principles and concepts of e-cash.


Author(s):  
Pasquale De Meo ◽  
Giovanni Quattrone ◽  
Giorgio Terracina ◽  
Domenico Ursino

An electronic service (e-service) can be defined as a collection of network-resident software programs that collaborate for supporting users in both accessing and selecting data and services of their interest present in a provider site. Examples of e-services are e-commerce, e-learning, and e-government applications. E-services are undoubtedly one of the engines presently supporting the Internet revolution (Hull, Benedikt, Christophides & Su, 2003). Indeed, nowadays, a large number and a great variety of providers offer their services also or exclusively via the Internet.


2002 ◽  
pp. 98-108
Author(s):  
Rahul Singh ◽  
Mark A. Gill

Intelligent agents and multi-agent technologies are an emerging technology in computing and communications that hold much promise for a wide variety of applications in Information Technology. Agent-based systems range from the simple, single agent system performing tasks such as email filtering, to a very complex, distributed system of multiple agents each involved in individual and system wide goal-oriented activity. With the tremendous growth in the Internet and Internet-based computing and the explosion of commercial activity on the Internet in recent years, intelligent agent-based systems are being applied in a wide variety of electronic commerce applications. In order to be able to act autonomously in a market environment, agents must be able to establish and maintain trust relationships. Without trust, commerce will not take place. This research extends previous work in intelligent agents to include a mechanism for handling the trust relationship and shows how agents can be fully used as intermediaries in commerce.


2018 ◽  
Vol 11 (4) ◽  
pp. 32-52 ◽  
Author(s):  
Kouah Sofia ◽  
Kitouni Ilham

Nowadays, the Internet of things (IoT) is becoming a promising technology which revolutionizes and simplifies our daily life style. It allows interaction and cooperation between a large variety of pervasive objects over wireless and wired connections, in order to achieve specific goals. Moreover, it provides a concise integration of physical world into computer systems through network infrastructure. This paper provides an agent-based architecture for developing IoT systems. The proposed architecture is multi-layer and generic. It encompasses four layers: Physical Component Management, Local Management -Coordination, Global Management-Coordination and Specialized Operative Management Layers. The first one can be seen as a smart layer that ensures connection and communication between things and the system. The second one constitutes the intelligent core of the system which acts locally to ensure coordination and further internal functioning. The third layer ensures coordination between the local system and the externals ones. The last layer supports additional behaviors which are domain dependent. The architecture is illustrated by an IoT system diagnosis.


Sign in / Sign up

Export Citation Format

Share Document