Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1608
Author(s):  
Ed Kamya Kiyemba Edris ◽  
Mahdi Aiash ◽  
Jonathan Loo

Device-to-Device (D2D) communications will be used as an underlay technology in the Fifth Generation mobile network (5G), which will make network services of multiple Service Providers (SP) available anywhere. The end users will be allowed to access and share services using their User Equipments (UEs), and thus they will require seamless and secured connectivity. At the same time, Mobile Network Operators (MNOs) will use the UE to offload traffic and push contents closer to users relying on D2D communications network. This raises security concerns at different levels of the system architecture and highlights the need for robust authentication and authorization mechanisms to provide secure services access and sharing between D2D users. Therefore, this paper proposes a D2D level security solution that comprises two security protocols, namely, the D2D Service security (DDSec) and the D2D Attributes and Capability security (DDACap) protocols, to provide security for access, caching and sharing data in network-assisted and non-network-assisted D2D communications scenarios. The proposed solution applies Identity-based Encryption (IBE), Elliptic Curve Integrated Encryption Scheme (ECIES) and access control mechanisms for authentication and authorization procedures. We formally verified the proposed protocols using ProVerif and applied pi calculus. We also conducted a security analysis of the proposed protocols.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Somayeh Soleimani ◽  
Xiaofeng Tao

Caching content by users constitutes a promising solution to decrease the costly transmissions with going through the base stations (BSs). To improve the performance of in-network caching in device-to-device (D2D) communications, caching placement and content delivery should be jointly optimized. To this end, we jointly optimize caching decision and content discovery strategies by considering the successful content delivery in D2D links for maximizing the in-network caching gain through D2D communications. Moreover, an in-network caching placement problem is formulated as an integer nonlinear optimization problem. To obtain the optimal solution for the proposed problem, Lagrange dual decomposition is applied in order to reduce the complexity. Simulation results show that the proposed algorithm has a near-optimal performance, approaching that of the exhaustive search method. Furthermore, the proposed scheme has a notable in-network caching gain and an improvement in traffic offloading compared to that of other caching placement schemes.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gábor Fodor

Device-to-device (D2D) communications in cellular spectrum have the potential of increasing the spectral and energy efficiency by taking advantage of the proximity and reuse gains. Although several resource allocation (RA) and power control (PC) schemes have been proposed in the literature, a comparison of the performance of such algorithms as a function of the available channel state information has not been reported. In this paper, we examine which large scale channel gain knowledge is needed by practically viable RA and PC schemes for network assisted D2D communications. To this end, we propose a novel near-optimal and low-complexity RA scheme that can be advantageously used in tandem with the optimal binary power control scheme and compare its performance with three heuristics-based RA schemes that are combined either with the well-known 3GPP Long-Term Evolution open-loop path loss compensating PC or with an iterative utility optimal PC scheme. When channel gain knowledge about the useful as well as interfering (cross) channels is available at the cellular base station, the near-optimal RA scheme, termed Matching, combined with the binary PC scheme is superior. Ultimately, we find that the proposed low-complexity RA + PC tandem that uses some cross-channel gain knowledge provides superior performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yinuo He ◽  
Feiran Wang ◽  
Jianjun Wu

Device-to-device (D2D) communications and femtocell systems can bring significant benefits to users’ throughput. However, the complicated three-tier interference among macrocell, femtocell, and D2D systems is a challenging issue in heterogeneous networks. As D2D user equipment (UE) can cause interference to cellular UE, scheduling and allocation of channel resources and power of D2D communication need elaborate coordination. In this paper, we propose a joint scheduling and resource allocation scheme to improve the performance of D2D communication. We take UE rate and UE fairness into account by performing interference management. First, we construct a Stackelberg game framework in which we group a macrocellular UE, a femtocellular UE, and a D2D UE to form a two-leader one-follower pair. The cellular UE are leaders, and D2D UE is the follower who buys channel resources from the leaders. We analyze the equilibrium of the game and obtain solutions to the equilibrium. Second, we propose an algorithm for joint scheduling of D2D pairs based on their utility. Finally, we perform computer simulations to study the performance of the proposed scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Yeonjin Jeong ◽  
Jooheum Yoon ◽  
Sang Hyun Lee ◽  
Yun Hee Kim

We consider a multidevice network with asymmetric antenna configurations which supports not only communications between an access point and devices but also device-to-device (D2D) communications for the Internet of things. For the network, we propose the transmit and receive beamforming with the channel state information (CSI) for virtual multiple-input multiple-output (MIMO) enabled by D2D receive cooperation. We analyze the sum rate achieved by a device pair in the proposed method and identify the strategies to improve the sum rate of the device pair. We next present a distributed algorithm and its equivalent algorithm for device pairing to maximize the throughput of the multidevice network. Simulation results confirm the advantages of the transmit CSI and D2D cooperation as well as the validity of the distributive algorithm.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Haejoon Jung ◽  
In-Ho Lee

Internet of things (IoT) is a smart technology that connects anything anywhere at any time. Intelligent device-to-device (D2D) communication, in which devices will communicate with each other autonomously without any centralized control, is an integral part of the Internet of Things (IoT) ecosystem. Thus, for D2D applications such as local file sharing or swarm sensing, we study communications between devices in proximity in ultra-dense urban environments, where devices are stacked vertically and dispersed in the horizontal plane. To reflect the spatiotemporal correlation inherently embedded in the D2D communications, we model and analyze clustered D2D networks in three-dimensional (3D) space based on Thomas cluster process (TCP), where the locations of clusters follow Poisson point process, and cluster members (devices) are normally distributed around their cluster centers. We assume that multiple device pairs in the network can share the same frequency band simultaneously. Thus, in the presence of cochannel interference from both the same cluster and the other clusters, we investigate the coverage probability and the area spectral efficiency of the clustered D2D networks in 3D space.


Author(s):  
Shamganth K ◽  
Said Shafi Abdullah Al-Shabibia

Device-to-device (D2D) communications underlayed to a cellular infrastructure has recently been proposed to increase spectrum and energy efficiency. Relay selection plays a vital role in cooperative networks. In D2D communication, if the chosen relay is not the best relay, then the whole communication will not be successful from source node to destination node. Also to choose the optimal relays, if more feedback and time delay exists between the source nodes and relay node then it leads to degradation of spectral efficiency.  A survey on the relay selection techniques used with D2D communications and the challenges and design issues associated with the integration of D2D in 5G cellular network is presented.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1361 ◽  
Author(s):  
Tae-Won Ban ◽  
Woongsup Lee

Recently, device-to-device (D2D) communications have been attracting substantial attention because they can greatly improve coverage, spectral efficiency, and energy efficiency, compared to conventional cellular communications. They are also indispensable for the mobile caching network, which is an emerging technology for next-generation mobile networks. We investigate a cellular overlay D2D network where a dedicated radio resource is allocated for D2D communications to remove cross-interference with cellular communications and all D2D devices share the dedicated radio resource to improve the spectral efficiency. More specifically, we study a problem of radio resource management for D2D networks, which is one of the most challenging problems in D2D networks, and we also propose a new transmission algorithm for D2D networks based on deep learning with a convolutional neural network (CNN). A CNN is formulated to yield a binary vector indicating whether to allow each D2D pair to transmit data. In order to train the CNN and verify the trained CNN, we obtain data samples from a suboptimal algorithm. Our numerical results show that the accuracies of the proposed deep learning based transmission algorithm reach about 85%∼95% in spite of its simple structure due to the limitation in computing power.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Haejoon Jung ◽  
In-Ho Lee

We consider device-to-device (D2D) communications in millimeter-wave (mm Wave) for the future fifth generation (5G) cellular networks. While the mm Wave systems can support multiple D2D pairs simultaneously through beamforming with highly directional antenna arrays, the mm Wave channel is significantly more susceptible to blockage compared to microwave; mm Wave channel studies indicate that if line-of-sight (LoS) paths are blocked, reliable mm Wave communications may not be achieved for high data-rate applications. Therefore, assuming that an outage occurs in the absence of the LoS path between two wireless devices by obstructions, we focus on connectivity of the mm Wave D2D networks. We consider two types of D2D communications: direct and indirect schemes. The connectivity performances of the two schemes are investigated in terms of (i) the probability to achieve a fully connected network PFC and (ii) the average number of reliably connected devices γ. Through analysis and simulation, we show that, as the network size increases, PFC and γ decrease. Also, PFC and γ decrease, when the blockage parameter increases. Moreover, simulation results indicate that the hybrid direct and indirect scheme can improve both PFC and γ up to about 35% compared to the nonhybrid scheme.


Sign in / Sign up

Export Citation Format

Share Document