A Novel Method to Obtain Modulus Image of Soft Tissues Using Ultrasound Water Jet Indentation: A Phantom Study

2007 ◽  
Vol 54 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Min-Hua Lu ◽  
Yong-Ping Zheng ◽  
Qing-Hua Huang
Author(s):  
P. J. Borkowski ◽  
J. A. Borkowski

Novel method for the 3D shaping of different materials using a high-pressure abrasive water jet is presented in the paper. For the steering movement process of the jet, a principle similar to the raster image way of record and readout was used. However, respective colors of pixels of such a bitmap are connected with adequate jet feed rate that causes erosion of material with adequate depth. Thanks to that innovation, one can observe spatial imaging of the object. Theoretical basis as well as spatial model of material shaping including steering program is presented in. There are also presented experimental erosion results as well as practical examples of the object’s bas-relief made of metal.


2007 ◽  
Vol 342-343 ◽  
pp. 853-856 ◽  
Author(s):  
Duk Young Jung ◽  
Yu Bong Kang ◽  
Toshie Tsuchiya ◽  
Sadami Tsutsumi

Accurate measurement of the mechanical properties of artificial or cultivated cartilage is a major factor for determining successive regeneration of defective soft tissues. In this study, we developed a novel method that enabled the bulk modulus (k-modulus) to be measured nondestructively using the relationship between volume and pressure of living soft tissues. In order to validate this method we estimated the bulk modulus of soft silicone rubbers using our new method and a conventional method. The results showed a 5 ~ 10% difference between the results obtained with the two methods. Our method was used subsequently to measure the mechanical properties of cultivated cartilage samples (collagen gel type), that had been incubated for four weeks in the presence or absence of human articular chondrocytes (HACs). Our experiments showed that cultivated cartilage tissues grown in the presence of HACs had a higher bulk modulus (120 ± 20 kPa) than samples grown without HACs (90 ± 15 kPa). The results indicated that our novel method offered an effective method for measurement of volume changes in minute living soft tissues, with the measurements having a high degree of accuracy and precision. Furthermore, this method has significant advantages over conventional approaches as it can be used to rapidly and accurately evaluate the strength of soft tissues during cultivation without causing damage to the specimen.


2007 ◽  
Vol 342-343 ◽  
pp. 901-904
Author(s):  
Yu Bong Kang ◽  
T. Oida ◽  
Duk Young Jung ◽  
A. Fukuma ◽  
T. Azuma ◽  
...  

In order to evaluate the mechanical properties of the human skeletal muscles, the elasticity and viscosity of the human calf muscles were measured with Magnetic Resonance Elastography (MRE). MRE is a novel method to measure the mechanical properties of living soft tissues in vivo quantitatively by observing the strain waves propagated in the object. In this study, the shear modulus and viscosity coefficient were measured with MRE. The shear modulus was 3.7 kPa in relaxed state, and increased with increasing the muscle forces. Interestingly, the viscosity was changed with the vibration frequency applied to the muscles, that was 4.5 Pa·s at 100Hz vibration and 2.4 Pa·s at 200Hz vibration. This shows clearly the visco-elastic property.


2017 ◽  
Vol 19 (6) ◽  
pp. 0-0 ◽  
Author(s):  
Robert Jopowicz ◽  
Małgorzata Jopowicz ◽  
Łukasz Czarnocki ◽  
Jarosław Michał Deszczyński ◽  
Jarosław Deszczyński

The term Rehabilitative Ultrasound Imaging (RUSI) refers to the use of ultrasound imaging by physiothera­pists. Ultrasound is used by physiotherapists to evaluate the morphology of muscles and other associated soft tissues not only at rest but also for a dynamic assessment of those structures during physical activities and tasks. RUSI is most commonly utilized as part of a biofeedback mechanism, which shows good efficacy in lower back pain treatment. Several possibilities have been also described for clinically adapting this method in the rehabilitation of the shoulder and knee and postoperative improvement of tendons. RUSI is a novel method with a high clinical potential to support physiotherapeutic therapies.


Author(s):  
Hamidreza Khodajou-Chokami ◽  
Seyed Abolfazl Hosseini ◽  
Mohammad Reza Ay ◽  
Ali Safarzadehamiri ◽  
Pardis Ghafarian ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Frits A. Rangel ◽  
Thomas J. J. Maal ◽  
Stefaan J. Bergé ◽  
Anne Marie Kuijpers-Jagtman

Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic surgery, titanium markers were glued to the gingiva. Next, a CBCT scan and dental impressions were made. During the impression-taking procedure, the titanium markers were transferred to the impression. The impressions were scanned, and all CBCT datasets were exported in DICOM format. The two datasets were matched, and the dentition derived from the scanned impressions was transferred to the CBCT of the patient. After matching the two datasets, the average distance between the corresponding markers was 0.1 mm. This novel method allows for the integration of digital dental casts into CBCT scans, overcoming problems such as unwanted extra radiation exposure, distortion of soft tissues due to the use of bite jigs, and time-consuming digital data handling.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Bodil Hakonen ◽  
Linnea K. Lönnberg ◽  
Eva Larkö ◽  
Kristina Blom

The lack of predictablein vitromethods to analyze antimicrobial activity could play a role in the development of resistance to antibiotics. Current used methods analyze planktonic cells but for the method to be clinically relevant, biofilm inin vivolike conditions ought to be studied. Hence, our group has developed a qualitative and quantitative method within vivolike 3D tissue for prediction of antimicrobial activity in reality. Devices (wound dressings) were applied on top ofPseudomonas aeruginosainoculated Muller-Hinton (MH) agar or 3D synthetic soft tissues (SST) and incubated for 24 hours. The antibacterial activity was then analyzed visually and by viable counts. On MH agar two out of three silver containing devices showed zone of inhibitions (ZOI) and on SST, ZOI were detected for all three. Corroborating results were found upon evaluating the bacterial load in SST and shown to be silver concentration dependent. In conclusion, a novel method was developed combining visual rapid screening and quantitative evaluation of the antimicrobial activity in both tissue and devices. It uses tissue allowing biofilm formation thus mimicking reality closely. These conditions are essential in order to predict antimicrobial activity of medical devices in the task to prevent device related infections.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Min-Hua Lu ◽  
Rui Mao ◽  
Yin Lu ◽  
Zheng Liu ◽  
Tian-Fu Wang ◽  
...  

Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young’s modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson’s ratio using Hayes’ equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes’ equation has been derived by introducing a new scaling factor which is dependent on Poisson’s ratiosv, aspect ratioa/h(the radius of the indenter/the thickness of the test tissue), and deformation ratiod/h. With this model, the Young’s modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%.


Sign in / Sign up

Export Citation Format

Share Document