scholarly journals A Novel Qualitative and Quantitative Biofilm Assay Based on 3D Soft Tissue

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Bodil Hakonen ◽  
Linnea K. Lönnberg ◽  
Eva Larkö ◽  
Kristina Blom

The lack of predictablein vitromethods to analyze antimicrobial activity could play a role in the development of resistance to antibiotics. Current used methods analyze planktonic cells but for the method to be clinically relevant, biofilm inin vivolike conditions ought to be studied. Hence, our group has developed a qualitative and quantitative method within vivolike 3D tissue for prediction of antimicrobial activity in reality. Devices (wound dressings) were applied on top ofPseudomonas aeruginosainoculated Muller-Hinton (MH) agar or 3D synthetic soft tissues (SST) and incubated for 24 hours. The antibacterial activity was then analyzed visually and by viable counts. On MH agar two out of three silver containing devices showed zone of inhibitions (ZOI) and on SST, ZOI were detected for all three. Corroborating results were found upon evaluating the bacterial load in SST and shown to be silver concentration dependent. In conclusion, a novel method was developed combining visual rapid screening and quantitative evaluation of the antimicrobial activity in both tissue and devices. It uses tissue allowing biofilm formation thus mimicking reality closely. These conditions are essential in order to predict antimicrobial activity of medical devices in the task to prevent device related infections.

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2959 ◽  
Author(s):  
Sindi P. Ndlovu ◽  
Kwanele Ngece ◽  
Sibusiso Alven ◽  
Blessing A. Aderibigbe

Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246003
Author(s):  
Gleyce Hellen de Almeida de Souza ◽  
Joyce Alencar dos Santos Radai ◽  
Marcia Soares Mattos Vaz ◽  
Kesia Esther da Silva ◽  
Thiago Leite Fraga ◽  
...  

Dissemination of carbapenem-resistant Klebsiella pneumoniae poses a threat to the successful treatment of bacterial diseases and increases the need for new antibacterial agents development. The objective of this study was to determine the antimicrobial activity of carvacrol against multidrug-resistant K. pneumoniae. Carbapenemase production was detected by MALDI-TOF. The PCR and sequencing showed that the blaKPC-2, blaOXA-48, blaNDM-1, blaCTX-M-8 genes were present in carbapenem-resistant K. pneumoniae strains. The polymyxin-resistant K. pneumoniae strain exhibited alterations in mgrB gene. The antimicrobial activity of carvacrol was evaluated in vitro using broth microdilution and time-kill methods. For this, carbapenem-resistant K. pneumoniae and polymyxin-resistant strains, were evaluated. The in vitro results showed that carvacrol had antimicrobial activity against all isolates evaluated. The survival curves showed that carvacrol eradicated all of the bacterial cells within 4 h. The antimicrobial effect of carvacrol in vivo was determined using a mouse model of infection with Klebsiella pneumoniae carbapenemase (KPC). The treatment with carvacrol was associated with increased survival, and significantly reduced bacterial load in peritoneal lavage. In addition, groups treated with carvacrol, had a significant reduction in the total numbers of white cell and significantly increased of platelets when compared to the untreated group. In vivo and in vitro studies showed that carvacrol regimens exhibited significant antimicrobial activity against KPC-producing K. pneumoniae, making it an interesting candidate for development of alternative treatments.


2005 ◽  
Vol 73 (6) ◽  
pp. 3609-3617 ◽  
Author(s):  
J. W. McMichael ◽  
A. I. Maxwell ◽  
K. Hayashi ◽  
K. Taylor ◽  
W. A. Wallace ◽  
...  

ABSTRACT Staphylococcus aureus is a pathogen often found in pneumonia and sepsis. In the context of the resistance of this organism to conventional antibiotics, an understanding of the regulation of natural endogenous antimicrobial molecules is of paramount importance. Previous studies have shown that both human and mouse airways express a variety of these molecules, including defensins, cathelicidins, and the four-disulfide core protein secretory leukocyte protease inhibitor. We demonstrate here by culturing mouse tracheal epithelial cells at an air-liquid interface that, despite the production of Defb1, Defb14, and Defr1 in this system, these cells are unable to clear S. aureus when exposed to this respiratory pathogen. Using an adenovirus (Ad)-mediated gene transfer strategy, we show that overexpression of elafin, an anti-elastase/antimicrobial molecule (also a member of the four-disulfide core protein family), dramatically improves the clearance of S. aureus. In addition, we also demonstrate that this overexpression is efficient in vivo and that intratracheal instillation of Ad-elafin significantly reduced the lung bacterial load and demonstrates concomitant anti-inflammatory activity by reducing neutrophil numbers and markers of lung inflammation, such as bronchoalveolar lavage levels of tumor necrosis factor and myeloperoxidase. These findings show that an increased antimicrobial activity phenotype is provided by the elafin molecule and have implications for its use in S. aureus-associated local and systemic infections.


Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


2019 ◽  
Vol 70 (7) ◽  
pp. 2519-2523
Author(s):  
Denisa Batir Marin ◽  
Oana Cioanca ◽  
Mihai Apostu ◽  
Cristina Gabriela Tuchilus ◽  
Cornelia Mircea ◽  
...  

The objective of the current study is represented by the determination of silica and a phytochemical screening of phenolic derivates of some Equisetum species. The antioxidant and antimicrobial activity for Equisetum pratense Ehrh.,, Equisetum sylvaticum L. and Equisetum telmateia Ehrh. (sin. Equisetum maximum Lam.) were also investigated. The concentration of silicon (Si) in plants was determined by the spectrophotometric method using previous treatment with NaOH 50% both for the stem and the nodal branches [1]. Results obtained varied from 95.12 to 162.10 SiO2 mg/g dry plant which represents 4.44% to 7.58% Si/100g dry sample. Two types of total extracts were obtained using different solvents and were subjected to qualitative and quantitative chemical analysis considering total phenolic content [2]. The highest concentration of investigated compounds was found in the methanolic extract, E. sylvaticum, 196.5mg/g dry sample. Antioxidant activity was monitored spectrophotometrically and expressed in terms of IC50 (�g/mL) [3]. Values gathered ranged from 261.7 to 429.5 �g/mL. The highest capacity to neutralized DPPH radicals was found in E. sylvaticum. In vitro antimicrobial activity was determined using difusimetric method [4]. Testing was performed on four microorganisms: three strains of bacteria and one species of fungi. Different effects were noticed against the bacteria, furthermore the methanol extract appeared to be most efficient. All extracts showed significand antimicrobial activity against Staphylococcus aureus (ATCC 25923) and Candida albicans (ATCC 90028) and weak to no activity against Pseudomonas aeruginosa (ATCC 27853) and Escherichia coli (ATCC 25922).


2019 ◽  
Vol 16 (8) ◽  
pp. 688-697
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


2019 ◽  
Vol 33 (9) ◽  
pp. 1285-1297 ◽  
Author(s):  
Cornelia Wiegand ◽  
Martin Abel ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Michael Zieger ◽  
...  

Background Application of controlled in vitro techniques can be used as a screening tool for the development of new hemostatic agents allowing quantitative assessment of overall hemostatic potential. Materials and methods Several tests were selected to evaluate the efficacy of cotton gauze, collagen, and oxidized regenerated cellulose for enhancing blood clotting, coagulation, and platelet activation. Results Visual inspection of dressings after blood contact proved the formation of blood clots. Scanning electron microscopy demonstrated the adsorption of blood cells and plasma proteins. Significantly enhanced blood clot formation was observed for collagen together with β-thromboglobulin increase and platelet count reduction. Oxidized regenerated cellulose demonstrated slower clotting rates not yielding any thrombin generation; yet, led to significantly increased thrombin-anti-thrombin-III complex levels compared to the other dressings. As hemostyptica ought to function without triggering any adverse events, induction of hemolysis, instigation of inflammatory reactions, and initiation of the innate complement system were also tested. Here, cotton gauze provoked high PMN elastase and elevated SC5b-9 concentrations. Conclusions A range of tests for desired and undesired effects of materials need to be combined to gain some degree of predictability of the in vivo situation. Collagen-based dressings demonstrated the highest hemostyptic properties with lowest adverse reactions whereas gauze did not induce high coagulation activation but rather activated leukocytes and complement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


Sign in / Sign up

Export Citation Format

Share Document