Reliability of Highly Stable Amorphous-Silicon Thin-Film Transistors Under Low Gate-Field Stress—Part II: Optimization of Fabrication Conditions and Gate Voltage Dependence

2016 ◽  
Vol 16 (2) ◽  
pp. 255-262
Author(s):  
Ting Liu ◽  
Levent E. Aygun ◽  
Sigurd Wagner ◽  
James C. Sturm
2019 ◽  
Vol 66 (6) ◽  
pp. 2614-2619 ◽  
Author(s):  
Guan-Fu Chen ◽  
Hong-Chih Chen ◽  
Ting-Chang Chang ◽  
Shin-Ping Huang ◽  
Hua-Mao Chen ◽  
...  

1997 ◽  
Vol 36 (Part 1, No. 10) ◽  
pp. 6226-6229 ◽  
Author(s):  
Huang-Chung Cheng ◽  
Jun-Wei Tsai ◽  
Chun-Yao Huang ◽  
Fang-Chen Luo ◽  
Hsing-Chien Tuan

1996 ◽  
Vol 424 ◽  
Author(s):  
R. E. I. Schropp ◽  
K. F. Feenstra ◽  
C. H. M. Van Der Werf ◽  
J. Holleman ◽  
H. Meiling

AbstractWe present the first thin film transistors (TFTs) incorporating a low hydrogen content (5 - 9 at.-%) amorphous silicon (a-Si:H) layer deposited by the Hot-Wire Chemical Vapor Deposition (HWCVD) technique. This demonstrates the possibility of utilizing this material in devices. The deposition rate by Hot-Wire CVD is an order of magnitude higher than by Plasma Enhanced CVD. The switching ratio for TFTs based on HWCVD a-Si:H is better than 5 orders of magnitude. The field-effect mobility as determined from the saturation regime of the transfer characteristics is still quite poor. The interface with the gate dielectric needs further optimization. Current crowding effects, however, could be completely eliminated by a H2 plasma treatment of the HW-deposited intrinsic layer. In contrast to the PECVD reference device, the HWCVD device appears to be almost unsensitive to bias voltage stressing. This shows that HW-deposited material might be an approach to much more stable devices.


2009 ◽  
Vol 105 (12) ◽  
pp. 124504 ◽  
Author(s):  
S. L. Rumyantsev ◽  
Sung Hun Jin ◽  
M. S. Shur ◽  
Mun-Soo Park

1989 ◽  
Vol 28 (Part 1, No. 11) ◽  
pp. 2197-2200 ◽  
Author(s):  
Kouichi Hiranaka ◽  
Tetsuzo Yoshimura ◽  
Tadahisa Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document