A Data-Driven Variable-Gain Control Strategy for an Ultra-Precision Wafer Stage With Accelerated Iterative Parameter Tuning

2015 ◽  
Vol 11 (5) ◽  
pp. 1179-1189 ◽  
Author(s):  
Min Li ◽  
Yu Zhu ◽  
Kaiming Yang ◽  
Chuxiong Hu
Author(s):  
Luole Guo ◽  
Hongbing Xu ◽  
Jianxiao Zou ◽  
Hongyu Jie ◽  
Gang Zheng

In order to improve the dynamic performance and stability of general acceleration slip regulation (ASR) control technology for four-wheel independent drive electric vehicle (4WID EV), an ASR control strategy based on variable gain controller (VGC) is proposed in this paper. First of all, a road identification strategy is designed to identify the current road surface and calculate the optimal slip ratio of the road. Then, the optimal slip ratio is taken as the control target, and the ASR control strategy based on VGC is designed to keeps slip ratio around the optimum slip ratio through controlling the driving torque output, so wheels can make the best of road adhesion to prevent vehicle from slipping. Meanwhile, we analyze the control system state space, and build a scalar function of the system, and prove that the system satisfies Lyapunov large scale asymptotic stability theorem, so the parameters of the VGC does not affect the system stability. Then, in order to meet the requirement of quick dynamic response and no overshoot, parameters selection of VGC is deduced by mathematics. Finally, the co-simulation of Matlab/Simulink and Carsim results show that the proposed control strategy is with the better dynamics and stability, and can better prevent wheel slipping on various roads.


2022 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Biao Li ◽  
Xianku Zhang ◽  
Jun Wang ◽  
Ning Chen

The gyrostabilizer produces the anti-roll effect through the precession output moment generated by a high-speed rotating flywheel. As a floating-base multi-body system composed of ship and gyrostabilizer, the recent research that has only focused on the control strategies or multi-body dynamics is obviously not comprehensive. This study presents an adaptive controller based on the variable gain control strategy for a marine gyrostabilizer installed on a port salvage tug. The variable gain control strategy controlled the flywheel precession output moment of the gyrostabilizer and thereby of the precession process, to reduce the ship roll motion effectively. Furthermore, a full-system hydrodynamic model of a gyrostabilizer-ship-wave based on three-dimensional numerical wave flume technology was innovatively established to evaluate its anti-roll performance under irregular wave conditions. The simulation results show that, for the sea state considered, the increase of spin rate of gyrostabilizer flywheel improved the anti-roll effect significantly. The average anti-roll rate of the gyrostabilizer decreased with the increase of significant wave height, wave period and wave encounter angle.


Author(s):  
N.S. Allen ◽  
R.D. Allen

Various methods of video-enhanced microscopy combine TV cameras with light microscopes creating images with improved resolution, contrast and visibility of fine detail, which can be recorded rapidly and relatively inexpensively. The AVEC (Allen Video-enhanced Contrast) method avoids polarizing rectifiers, since the microscope is operated at retardations of λ/9- λ/4, where no anomaly is seen in the Airy diffraction pattern. The iris diaphram is opened fully to match the numerical aperture of the condenser to that of the objective. Under these conditions, no image can be realized either by eye or photographically. Yet the image becomes visible using the Hamamatsu C-1000-01 binary camera, if the camera control unit is equipped with variable gain control and an offset knob (which sets a clamp voltage of a D.C. restoration circuit). The theoretical basis for these improvements has been described.


2010 ◽  
Vol 32 (11) ◽  
pp. 2772-2775
Author(s):  
Fei-hua Chen ◽  
Xin-zhong Duo ◽  
Xiao-wei Sun

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Yusung Lee ◽  
Woohyun Kim

In this study, an optimal control strategy for the variable refrigerant flow (VRF) system is developed using a data-driven model and on-site data to save the building energy. Three data-based models are developed to improve the on-site applicability. The presented models are used to determine the length of time required to bring each zone from its current temperature to the set point. The existing data are used to evaluate and validated the predictive performance of three data-based models. Experiments are conducted using three outdoor units and eight indoor units on site. The experimental test is performed to validate the performance of proposed optimal control by comparing between conventional and optimal control methods. Then, the ability to save energy wasted for maintaining temperature after temperature reaches the set points is evaluated through the comparison of energy usage. Given these results, 30.5% of energy is saved on average for each outdoor unit and the proposed optimal control strategy makes the zones comfortable.


2012 ◽  
Vol 241-244 ◽  
pp. 2215-2220
Author(s):  
Gao Wei Gu ◽  
En Zhu

A 10Gbit/s burst-mode transimpedance preamplifier is described. Regulated cascade (RGC) TIA core with variable gain, fast response peak detector, single-to-differential and output buffer are included, providing auto-gain-control and threshold extraction functions. The burst-mode preamplifier is implemented by 0.13µm CMOS technology, presents a high gain of 67.9dB with a 3-dB bandwidth of 6.92GHz and a low gain of 57.4dB with a 3-dB bandwidth of 8.60GHz with a settling time less than 20ns.


Sign in / Sign up

Export Citation Format

Share Document