scholarly journals Fast 2D Convolutions and Cross-Correlations Using Scalable Architectures

2017 ◽  
Vol 26 (5) ◽  
pp. 2230-2245 ◽  
Author(s):  
Cesar Carranza ◽  
Daniel Llamocca ◽  
Marios Pattichis
2003 ◽  
Vol 13 (2-3) ◽  
pp. 23 ◽  
Author(s):  
S. Horender ◽  
Yannis Hardalupas

2018 ◽  
Vol 31 (5-6) ◽  
pp. 227-233
Author(s):  
Weitao Wang ◽  
◽  
Baoshan Wang ◽  
Xiufen Zheng ◽  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 388
Author(s):  
Riccardo De Blasis ◽  
Giovanni Batista Masala ◽  
Filippo Petroni

The energy produced by a wind farm in a given location and its associated income depends both on the wind characteristics in that location—i.e., speed and direction—and the dynamics of the electricity spot price. Because of the evidence of cross-correlations between wind speed, direction and price series and their lagged series, we aim to assess the income of a hypothetical wind farm located in central Italy when all interactions are considered. To model these cross and auto-correlations efficiently, we apply a high-order multivariate Markov model which includes dependencies from each time series and from a certain level of past values. Besides this, we used the Raftery Mixture Transition Distribution model (MTD) to reduce the number of parameters to get a more parsimonious model. Using data from the MERRA-2 project and from the electricity market in Italy, we estimate the model parameters and validate them through a Monte Carlo simulation. The results show that the simulated income faithfully reproduces the empirical income and that the multivariate model also closely reproduces the cross-correlations between the variables. Therefore, the model can be used to predict the income generated by a wind farm.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Boris Kargoll ◽  
Alexander Dorndorf ◽  
Mohammad Omidalizarandi ◽  
Jens-André Paffenholz ◽  
Hamza Alkhatib

Abstract In this contribution, a vector-autoregressive (VAR) process with multivariate t-distributed random deviations is incorporated into the Gauss-Helmert model (GHM), resulting in an innovative adjustment model. This model is versatile since it allows for a wide range of functional models, unknown forms of auto- and cross-correlations, and outlier patterns. Subsequently, a computationally convenient iteratively reweighted least squares method based on an expectation maximization algorithm is derived in order to estimate the parameters of the functional model, the unknown coefficients of the VAR process, the cofactor matrix, and the degree of freedom of the t-distribution. The proposed method is validated in terms of its estimation bias and convergence behavior by means of a Monte Carlo simulation based on a GHM of a circle in two dimensions. The methodology is applied in two different fields of application within engineering geodesy: In the first scenario, the offset and linear drift of a noisy accelerometer are estimated based on a Gauss-Markov model with VAR and multivariate t-distributed errors, as a special case of the proposed GHM. In the second scenario real laser tracker measurements with outliers are adjusted to estimate the parameters of a sphere employing the proposed GHM with VAR and multivariate t-distributed errors. For both scenarios the estimated parameters of the fitted VAR model and multivariate t-distribution are analyzed for evidence of auto- or cross-correlations and deviation from a normal distribution regarding the measurement noise.


2020 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Enrico Creaco ◽  
Giacomo Galuppini ◽  
Alberto Campisano ◽  
Marco Franchini

This paper presents a two-step methodology for the stochastic generation of snapshot peak demand scenarios in water distribution networks (WDNs), each of which is based on a single combination of demand values at WDN nodes. The methodology describes the hourly demand at both nodal and WDN scales through a beta probabilistic model, which is flexible enough to suit both small and large demand aggregations in terms of mean, standard deviation, and skewness. The first step of the methodology enables generating separately the peak demand samples at WDN nodes. Then, in the second step, the nodal demand samples are consistently reordered to build snapshot demand scenarios for the WDN, while respecting the rank cross-correlations at lag 0. The applications concerned the one-year long dataset of about 1000 user demand values from the district of Soccavo, Naples (Italy). Best-fit scaling equations were constructed to express the main statistics of peak demand as a function of the average demand value on a long-time horizon, i.e., one year. The results of applications to four case studies proved the methodology effective and robust for various numbers and sizes of users.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Angika Bulbul ◽  
Joseph Rosen

AbstractPartial aperture imaging system (PAIS) is a recently developed concept in which the traditional disc-shaped aperture is replaced by an aperture with a much smaller area and yet its imaging capabilities are comparable to the full aperture systems. Recently PAIS was demonstrated as an indirect incoherent digital three-dimensional imaging technique. Later it was successfully implemented in the study of the synthetic marginal aperture with revolving telescopes (SMART) to provide superresolution with subaperture area that was less than one percent of the area of the full synthetic disc-shaped aperture. In the study of SMART, the concept of PAIS was tested by placing eight coded phase reflectors along the boundary of the full synthetic aperture. In the current study, various improvements of PAIS are tested and its performance is compared with the other equivalent systems. Among the structural changes, we test ring-shaped eight coded phase subapertures with the same area as of the previous circular subapertures, distributed along the boundary of the full disc-shaped aperture. Another change in the current system is the use of coded phase mask with a point response of a sparse dot pattern. The third change is in the reconstruction process in which a nonlinear correlation with optimal parameters is implemented. With the improved image quality, the modified-PAIS can save weight and cost of imaging devices in general and of space telescopes in particular. Experimental results with reflective objects show that the concept of coded aperture extends the limits of classical imaging.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 352
Author(s):  
Janusz Miśkiewicz

Within the paper, the problem of globalisation during financial crises is analysed. The research is based on the Forex exchange rates. In the analysis, the power law classification scheme (PLCS) is used. The study shows that during crises cross-correlations increase resulting in significant growth of cliques, and also the ranks of nodes on the converging time series network are growing. This suggests that the crises expose the globalisation processes, which can be verified by the proposed analysis.


Sign in / Sign up

Export Citation Format

Share Document