The Impact of Iron Core Model on Dynamic Behavior of Three-Phase Power Transformer Dynamic Model

2015 ◽  
Vol 51 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Klemen Dezelak ◽  
Martin Petrun ◽  
Miran Roser ◽  
Drago Dolinar ◽  
Gorazd Stumberger
Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2012 ◽  
Vol 163 ◽  
pp. 18-22 ◽  
Author(s):  
Hao Dong Gao ◽  
Yi Du Zhang ◽  
Xiang Sheng Gao

In order to investigate the effect of friction on gear system featuring confluence transmission, a non-linear dynamic model of three-gear system having two gear pairs was built. The influence of gear systems dynamic characteristics caused by changing of friction coefcient was researched. With the changing of friction coefcient, left-right gear pairs show dynamic behavior with coexist of same periodic motion, coexist of different periodic motion and chaos. With the increase of friction coefcient, the jump phenomenon of amplitude occurred, the impact of gear system became larger.


1993 ◽  
Vol 8 (4) ◽  
pp. 1811-1819 ◽  
Author(s):  
D. Dolinar ◽  
J. Pihler ◽  
B. Grcar

2006 ◽  
Vol 42 (10) ◽  
pp. 2849-2851 ◽  
Author(s):  
M. Dolinar ◽  
D. Dolinar ◽  
G. Stumberger ◽  
B. Polajzer ◽  
J. Ritonja
Keyword(s):  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 332-OR
Author(s):  
BOYI JIANG ◽  
YUXIANG ZHONG ◽  
PRATIK AGRAWAL ◽  
TONI L. CORDERO ◽  
ROBERT VIGERSKY
Keyword(s):  

2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


2017 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Suci Rahmatia ◽  
Marsah Zaysi Makhudzia

<p><em>Abstrak <strong>- </strong></em><strong>Transformator adalah peralatan listrik yang sangat vital dalam proses pembangkitan maupun transmisi energi listrik karena transformator dapat menaikkan atau menurunkan tegangan. Pada proses menaikkan dan menurunkan tegangan biasanya sering timbul panas akibat rugi – rugi tembaga pada inti besi dan kumparannya sehingga pada kondisi overload akan menimbulkan pemanasan yang berlebih dan dapat mempengaruhi kinerja transformator. Oleh karena itu dibuat sistem kontrol temperatur pada transformer yang dapat mengontrol temperatur di dalam transformator saat bekerja pada kondisi overload, sehigga transformatornya tidak terbakar. Dial thermometer digunakan sebagai alat yang mengontrol temperatur transformator pada sistem kontrol temperatur. Agar mendapatkan sistem kontrol yang optimal, maka setting temperatur pada dial thermometer di sesuaikan dengan temperatur maksimal tranformator dapat bekerja. Sehingga pada saat temperatur tertentu dial thermometer dapat memberikan sinyal untuk membunyikan alarm dan mengaktifkan kontrol kipas sehingga kipas dapat bekerja menurunkan temperatur transformator.<em></em></strong></p><p><strong><em> </em></strong></p><p><strong><em>Kata kunci - </em></strong><em>transformator, rugi – rugi tembaga, temperatur, sistem kontrol, dial thermometer<strong>.</strong></em></p><p><strong><em> </em></strong></p><p><em>Abstract <strong>- </strong></em><strong>A transformer is an electrical device that is vital in the generation and transmission of electrical energy because the transformer can raise (stepping up) or lower (stepping down) the voltage. In the process of raising and lowering the voltage is usually often caused heat loss of copper in iron core and coil so that the overload condition will cause excessive warming and can affect the performance of the transformer. Therefore, a temperature control system on the transformer can control the temperature inside the transformer while working under overload conditions, so the transformer is not burned. Dial thermometer is used as a device that controls the temperature of the transformer in the temperature control system. In order to obtain an optimal control system, the temperature setting on the dial thermometer adjusted to the maximum transformer temperature can work. So that when a certain temperature dial thermometer can provide a signal to sound the alarm and activate the fan control so that the fan can work down the transformer temperature.</strong></p><p><strong> </strong></p><p><strong><em>Keywords -  </em></strong><em>transformator, loss of copper, themperature, control system, dial thermometer<strong></strong></em></p>


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1105
Author(s):  
Jianhua Zhao ◽  
Lanchun Xing ◽  
Sheng Li ◽  
Weidong Yan ◽  
Dianrong Gao ◽  
...  

The magnetic-liquid double suspension bearing (MLDSB) is a new type of suspension bearing, with electromagnetic suspension as the main part and hydrostatic supports as the auxiliary part. It can greatly improve the bearing capacity and stiffness of rotor-bearing systems and is suitable for a medium speed, heavy load, and frequent starting occasions. Compared with the active electromagnetic bearing system, the traditional protective bearing device is replaced by the hydrostatic system in MLDSB, and the impact-rubbing phenomenon can be restrained and buffered. Thus, the probability and degree of friction and wear between the rotor and the magnetic pole are reduced drastically when the electromagnetic system fails. In order to explore the difference in the dynamic behavior law of the impact-rubbing phenomenon between the traditional protection device and hydrostatic system, the dynamic equations of the rotor impact-rubbing in three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system) under electromagnetic failure mode are established, and the axial trajectory and motion law of the rotor are numerically simulated. Finally, the dynamic behavior characteristics of the rotor are compared and analyzed. The results show that: Among the three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system), the hydrostatic system has the least influence on bouncing time, impact-rubbing force, and impact-rubbing degree, and the maximum impact-rubbing force of MLDSB is greatly reduced. Therefore, the protective bear is not required to be installed in the MLDSB. This study provides the basis for the theory of the “gap impact-rubbing” of MLDSB under electromagnetic failure, and helps to identify electromagnetic faults.


Sign in / Sign up

Export Citation Format

Share Document