Modeling and Simulation Aspects of Transient Electromagnetic–Mechanical Analysis for Industrial Applications

2016 ◽  
Vol 52 (3) ◽  
pp. 1-4
Author(s):  
Zeljko Tanasic ◽  
Thomas Werder Schlapfer ◽  
Jasmin Smajic
e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 613-623
Author(s):  
José Manuel Sandoval-Díaz ◽  
Francisco Javier Rivera-Gálvez ◽  
Marta Fernández-García ◽  
Carlos Federico Jasso-Gastinel

AbstractIn this work, for a semicontinuous emulsion polymerization reaction, it is shown that using a redox initiation system at 40°C, substantial modifications in copolymer chain composition with conversion can be easily obtained. To test controllable trajectories for comonomer feeding, linear and parabolic profiles were chosen to get different types of chain composition variations for the 50/50 w/w styrene/n-butyl acrylate system. For the “forced composition copolymers,” the molecular weight averages and distribution were obtained by size exclusion chromatography. The composition along conversion was followed by proton nuclear magnetic resonance to determine the weight composition distribution (WCD) of the copolymer chains. Mechanodynamic (dynamic-mechanical analysis), tensile, and hardness tests exhibited consistent results depending on the WCD that outcomes from the respective feeding profile. The results confirm that this methodology is of great potential for industrial applications when looking for synergy in copolymer properties, and low-cost processes.


2002 ◽  
Vol 37 (6) ◽  
pp. 585-589 ◽  
Author(s):  
I Caron ◽  
G Inglebert ◽  
R Gras ◽  
J. M De Monicault

Fretting damage, also known as small-amplitude oscillatory sliding motion, can lead to catastrophic failure in many industrial applications. An understanding of fretting fatigue and its reproduction in laboratory tests have enabled an evaluation to be made of the fretting resistance of homogeneous substrate. To reduce the damage caused by fretting fatigue, increasing use has been made of coatings or treatments that result in inhomogeneous solids. From a theoretical point of view, ascertaining the mechanical behaviour of materials so modified is quite complex due to insufficient definition of the contact parameters. This present study seeks to analyse a layered medium undergoing fretting fatigue in a cryotechnical environment and the improvement in its fretting fatigue resistance. The first step of the analysis of a layered alloy is the determination of the new contact parameters in elasticity, and the second is the characterization of the elastic-plastic coefficients of the strain-hardening law. An evaluation of the lifetime before crack initiation will close the analysis.


Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

AbstractPolymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding Kaolin particulate (KFP) and Luffa cylindrica fiber (LCF) on the mechanical properties of polyester resin. Luffa cylindrica fiber was treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt), and was used to reinforce unsaturated polyester resin using the hand lay-up method, whereas, for the hybrid composite, Kaolin particulates were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical analysis. Analysis of the result revealed that the reinforcement has enhanced greatly the mechanical properties of polyester composites.


Author(s):  
Mahmoud Ali ◽  
Thomas Sayet ◽  
Alain Gasser ◽  
Eric Blond

Mortarless refractory masonry structures are widely used in the steel industry for the linings of many high-temperature industrial applications including steel ladle. The design and the optimization of these components require accurate numerical models that consider the presence of joints as well as joints closure and opening due to cyclic heating and cooling. The present work reports on the formulation, numerical implementation, validation, and application of homogenized numerical models for simulation of refractory masonry structures with dry joints. The validated constitutive model has been used to simulate a steel ladle and to analyze its transient thermomechanical behavior during a typical thermal cycle of steel ladle. 3D solution domain, enhanced thermal and mechanical boundary conditions have been used. Parametric studies to investigate the impact of joints thickness on the thermomechanical response of the ladle have been carried out. The results clearly demonstrate that the thermomechanical behavior of mortarless masonry is orthotropic nonlinear due to gradual closure and reopening of joints with the increase and decrease of temperature. Also, resulting thermal stresses increase with the increase of temperature and decrease with the increase of joints thickness.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2118 ◽  
Author(s):  
Claudia Sergi ◽  
Jacopo Tirillò ◽  
Fabrizio Sarasini ◽  
Enrique Barbero Pozuelo ◽  
Sonia Sanchez Saez ◽  
...  

Considering the major role played by sandwich structures in many fields where high stiffness-to-weight ratio is required, the selection of a suitable core material is of paramount importance. In order to face the environmental problems related to waste disposal, the selection of an eco-friendly core material is now included in the design criteria of sandwich structures. Agglomerated cork is recognized as a good solution that combines satisfactory mechanical performances and eco-sustainability. Many research studies individually addressed cork’s morphological, thermal, and mechanical features without providing a comprehensive overview of the relationships that exist between them. In this work, the investigation of the peculiar cork morphology allowed learning more about its good insulation capacity and its impressive recovery capability. The use of dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) clarified the influence of temperature on both flexural and compressive performances. The effect of testing parameters such as temperature and speed on agglomerated cork properties was validated through statistical analysis. Moreover, to highlight agglomerated cork advantages and drawbacks, the work provides also a comparison with more traditional polyvinylchloride (PVC) foams commonly used in industrial applications.


This paper presents an overview of design, modeling and simulation of MEMS pressure sensor is using COMSOL Multiphysics V4.3b. An attempt has been made to achieve high sensitivity by providing different structures for membrane (Circular, square, rectangle & triangle) with uniform surface area and thickness. Further, simulations have been carried out with various loads ranging from 0.1 to 1MPa assigning three materials viz., InP, GaAs and Silicon. From the analyses of simulation results, it has been observed that the pressure sensor with circular membrane provided InP material found to exhibit more deformation and high sensitivity of 17.3×10-12 for 10 µm thickness and 50.8×10-12 for 7 µm thickness. The reasons for enhancement in the sensitivity are discussed in detail as function of input load, dimensional changes of diaphragm and materials addition. These studies are highly useful to check and compute pressure in various industrial and environmental conditions.


2005 ◽  
Vol 128 (4) ◽  
pp. 516-524 ◽  
Author(s):  
D. Abouri ◽  
A. Parry ◽  
A. Hamdouni ◽  
E. Longatte

Fluid-structure interactions occur in a wide range of industrial applications, including vibration of pipe-work, flow meters, and positive displacement systems as well as many flow control devices. This paper outlines computational methods for calculating the dynamic interaction between moving parts and the flow in a flow-meter system. Coupling of phenomena is allowed without need for access to the source codes and is thus suitable for use with commercially available codes. Two methods are presented: one with an explicit integration of the equations of motion of the mechanism and the other, with implicit integration. Both methods rely on a Navier-Stokes equation solver for the fluid flow. The more computationally expensive, implicit method is recommended for mathematically stiff mechanisms such as piston movement. Industrial-application examples shown are for positive displacement machines, axial turbines, and steam-generator tube-bundle vibrations. The advances in mesh technology, including deforming meshes with nonconformal sliding interfaces, open up this new field of application of computational fluid dynamics and mechanical analysis in flow meter design.


Sign in / Sign up

Export Citation Format

Share Document