Modeling of a Halbach Array Voice Coil Actuator via Fourier Analysis Based on Equivalent Structure

2019 ◽  
Vol 55 (8) ◽  
pp. 1-6 ◽  
Author(s):  
Xiaolu Huang ◽  
Chi Zhang ◽  
Jinhua Chen ◽  
Guilin Yang
2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Dion Hicks ◽  
Taufiq Rahman ◽  
Nicholas Krouglicof

Voice coil actuators (VCAs) are simple electro-mechanical devices, which are capable of generating linear motion in response to an electrical input. The generic cylindrical design of commercially available actuators imposes a large variety of limitations on the end user. The most prominent is the requirement to design and fit extra components to the actuator in order to increase functionality. To solve this issue, a novel voice coil actuator was created, which reconfigures the standard cylindrical design with one of a rectangular structure. The novel actuator incorporates planar magnets in a modified Halbach array configuration to ensure compactness and an exceptionally intense, uniform magnetic field. The moving coil is substituted with a printed circuit board (PCB) encompassing numerous current conducting traces. The board contains a miniature linear rail and bearing system, unified drive electronics, and highly adaptive position feedback circuitry resulting in a compact, highly dynamic and accurate device. In pursuit of optomechatronic applications, two distinct parallel kinematic mechanisms (PKMs) were developed to utilize the high dynamics and accuracy of the novel actuator. These devices were configured to function in only rotational degrees-of-freedom (DOF) and because of their underlying kinematic structures can be referred to as parallel orientation manipulators (POMs). In particular, two structures were defined, 2-PSS/U and 3-PSS/S, in order to constrain their payloads to two and three degrees of rotational freedom, respectively. The resultant manipulators are highly dynamic, precise and fulfill size, weight, and power requirements for many applications such as sense and avoidance and visual tracking.


1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


1985 ◽  
Vol 46 (C10) ◽  
pp. C10-171-C10-173 ◽  
Author(s):  
D. N. BESHERS ◽  
V. F. CORONEL

2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2020 ◽  
Vol 35 (11) ◽  
pp. 1110-1119
Author(s):  
Shuo CAO ◽  
◽  
Zhi-gao ZHANG ◽  
Zhi-yun ZHAO ◽  
Hu GU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document