A conceptual three-dimensional design of a non-destructive two-layer quasi-force-free magnet for megagauss field generation

2022 ◽  
pp. 1-1
Author(s):  
Alexander S. Nemov ◽  
Anna D. Lagutkina ◽  
German A. Shneerson
Author(s):  
Sebastian Brand ◽  
Michael Kögel ◽  
Frank Altmann ◽  
Ingrid DeWolf ◽  
Ahmad Khaled ◽  
...  

Abstract Through Silicon Via (TSV) is the most promising technology for vertical interconnection in novel three-dimensional chip architectures. Reliability and quality assessment necessary for process development and manufacturing require appropriate non-destructive testing techniques to detect cracks and delamination defects with sufficient penetration and imaging capabilities. The current paper presents the application of two acoustically based methods operating in the GHz-frequency band for the assessment of the integrity of TSV structures.


2015 ◽  
Vol 77 (17) ◽  
Author(s):  
Noor Amizan Abd. Rahman ◽  
Ruzairi Abdul Rahim ◽  
Nor Muzakkir Nor Ayob ◽  
Jaysuman Pusppanathan ◽  
Fazlul Rahman Mohd Yunus ◽  
...  

Welding work is a connection process between the structure and the materials. This process is used in the construction, maintenance and repair especially mechanical engineering. This study discusses the type of welding used in the industry, mainly involving the pipeline welds. On-demand need to every work process when finishing weld requires quality tests to ensure compliance to the standards required. Monitoring through the display image has long been used in Non-Destructive Testing (NDT). Various methods of monitoring used in NDT focused on Ultrasonic Tomography (UT) as a method used in NDT and as an option for the future. Previous imaging result was in two-dimensional (2D) and then upgraded to a three-dimensional image (3D). Besides, there is potential of 3D imaging beyond the existing limits in terms of size, material thickness, especially for welding steel pipes. Achievement through research of existing pipe size so far outside diameter of 200 mm and a thickness of 5.8 mm should be limited in view of the obstacles to enhanced image resolution is less effective when compared to other tomography methods.


2010 ◽  
pp. 109-117 ◽  
Author(s):  
Neda Motchurova-Dekova ◽  
David Harper

Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In ?Rhynchonella? flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.


2018 ◽  
Vol 15 (145) ◽  
pp. 20180312 ◽  
Author(s):  
S h. Eshghi ◽  
M. Jafarpour ◽  
A. Darvizeh ◽  
S. N. Gorb ◽  
H. Rajabi

Nature has evolved structures with high load-carrying capacity and long-term durability. The principles underlying the functionality of such structures, if studied systematically, can inspire the design of more efficient engineering systems. An important step in this process is to characterize the material properties of the structure under investigation. However, direct mechanical measurements on small complex-shaped biological samples involve numerous technical challenges. To overcome these challenges, we developed a method for estimation of the elastic modulus of insect cuticle, the second most abundant biological composite in nature, through simple light microscopy. In brief, we established a quantitative link between the autofluorescence of different constituent materials of insect cuticle, and the resulting mechanical properties. This approach was verified using data on cuticular structures of three different insect species. The method presented in this study allows three-dimensional visualisation of the elastic modulus, which is impossible with any other available technique. This is especially important for precise finite-element modelling of cuticle, which is known to have spatially graded properties. Considering the simplicity, ease of implementation and high-resolution of the results, our method is a crucial step towards a better understanding of material–function relationships in insect cuticle, and can potentially be adapted for other graded biological materials.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170048 ◽  
Author(s):  
M. I. Disney ◽  
M. Boni Vicari ◽  
A. Burt ◽  
K. Calders ◽  
S. L. Lewis ◽  
...  

Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods.


Author(s):  
Glen Lim Chun Yee ◽  
Yeo Joon Hock ◽  
Tsuyoshi Nishiwaki ◽  
Kenta Moriyasu ◽  
Kenichi Harano

Wear identification and projection have eluded shoe manufacturers due to the myriad of factors that affect the abrasion wear of shoes. Using a gridded three-dimensional cloud comparison in CloudCompare software, abrasion wear thickness of shoes was identified using the CIE-L-a-b colour system that is interpolated with the physical formula representation of colours. After obtaining the thickness lost, other wear factors like the material properties of the shoe sole, the runners’ personal profile and the running schedule were combined for wear projection. The methodological process from a non-destructive wear detection to wear projection allows shoe manufacturers to reduce the iterations of wear testing while maximizing the entire analysis of shoe wear. Shoe samples were kindly sponsored by ASICS Institute of Sport Science.


Sign in / Sign up

Export Citation Format

Share Document