Effects of Liquid Electrical Conductivity on the Electrical and Optical Characteristics of an AC-Excited Argon Gas–Liquid-Phase Discharge

2018 ◽  
Vol 46 (8) ◽  
pp. 2856-2864 ◽  
Author(s):  
H. I. A. Qazi ◽  
Yi-Ying Xin ◽  
He-ping Li ◽  
M. A. Khan ◽  
Lu Zhou ◽  
...  
2010 ◽  
Vol 156-157 ◽  
pp. 1090-1096
Author(s):  
Wei Qiang Wang ◽  
Ai Ju Li ◽  
Ming Ming You ◽  
Bin Xia

Composites of phenol formaldehyde (PF) resin/graphite reinforced by milled carbon fibers (MCFs) for bipolar plates are obtained by hot compression molding. The raw materials of the MCF particles, PF resin powder and graphite powder are simply dry powder ball milled and mixed. The effects of PF resin content and the content, granularity and surface treatment methods, such as air oxidation and Fenton/ultraviolet (UV) liquid-phase oxidation of MCFs on the electrical conductivity and flexural strength of the composites are measured by methods of four-point probe technique and three point flexural test, and the fracture patterns of the composites are analyzed by scanning electron microscope (SEM). The results indicate that the electrical conductivity decreases and flexural strength increases with the increase of PF resin content. Especially, the values of electrical conductivity and flexural strength can reach 165.28 S.cm-1 and 55.11MPa respectively when the PF resin content was 17% in weight. The properties of composites reinforced by air oxidation treated MCFs are better than those by liquid-phase oxidation treated one. The electrical conductivity and flexural strength of the composites are 208.12S.cm-1 and 57.44 MPa when they reinforced by 5% MCFs which treated by air oxidation at 450 . Compared with the nonreinfoced composites, the properties of reinforced composites increase 25.92% in electrical conductivity and 4.23% in flexural strength.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


2018 ◽  
Vol 77 ◽  
pp. 586-592 ◽  
Author(s):  
Alberto Gallifuoco ◽  
Luca Taglieri ◽  
Francesca Scimia ◽  
Alessandro Antonio Papa ◽  
Gabriele Di Giacomo

1987 ◽  
Vol 92 ◽  
Author(s):  
H.B. Harrison ◽  
A.P. Pogany ◽  
Y. Komem

ABSTRACTPolycrystalline silicon films have been amorphized by implantation with 100keV Ga ions of doses 0.3 and 6×1015cm−2. These films were subsequently recrystallized using either a furnace for longer times lower temperature (∼30 mins, 600° C) or rapid thermal processing (RTP) for shorter times higher temperatures ( ≤ 30 sec, 800° C, 900° C) in an endeavour to suppress any long range movement of the Ga during the anneal phase. It is found that for both the furnace and RTP for temperatures ≤ 800°C no significant movement is observed and that the lower temperature anneal for the highest dose produces the highest electrical conductivity. By contrast however, annealing at 900° C, even though the initial conductivity is higher than for any other anneal we observe a significant reduction with time and extremely rapid movement of the dopant species throughout the original poly layer. An initial rationale for this behaviour is proposed in terms of a liquid phase transformation during annealing.


2010 ◽  
Vol 105-106 ◽  
pp. 367-370 ◽  
Author(s):  
Guo Qiang Luo ◽  
Qiang Shen ◽  
Q.Z. Li ◽  
J. Li ◽  
Dong Ming Zhang ◽  
...  

In this study, SnO2-based ceramics, with CuO as sintering aid and Sb2O3 as activator of the electrical conductivity, was obtained by pressure-less sintering at 1100°C ~ 1470°C. Addition of antimony leads to a higher densification temperature. Densification behavior and microstructure development are strongly dependant on CuO and Sb2O3. CuO gives rise to a liquid phase; Sb2O3 retards the formation of liquid phase and hinders the growth of grain. The electrical resistivities of SnO2-based ceramics vary in a wide range from 10-2 to 107 Ω•cm, depending on starting compositions and processing conditions. The electrical resistivities of samples with different amounts of CuO and Sb2O3 show different trends with the increasing of sintering temperature. The addition of antimony rapidly promotes electrical conductivity of SnO2-based ceramics containing CuO as the solid solution reaction of Sb2O3-SnO2. As the additions of CuO and Sb2O3 are the same, the electrical resistivity arrives the minimal value of 4.72×10-2 Ω•cm for 99%SnO2+0.5%CuO +0.5%Sb2O3 at 1470°C. More content of Sb2O3 than CuO causes the degression of density and the rising of electrical resistivity of ceramics.


Sign in / Sign up

Export Citation Format

Share Document