Detection of Printable EUV Mask Absorber Defects and Defect Adders by Full Chip Optical Inspection of EUV Patterned Wafers

2017 ◽  
Vol 30 (4) ◽  
pp. 402-409
Author(s):  
Luciana Meli ◽  
Ravi Bonam ◽  
Scott Halle ◽  
Nelson Felix
1996 ◽  
Author(s):  
Pascal Bichebois ◽  
Pascal Perret ◽  
Herve M. Martin ◽  
Alain Brun ◽  
Daniel Burlet

2020 ◽  
Vol 13 (2) ◽  
pp. 93-100

Abstract: Quality control of the resist coating on a silicon wafer is one of the major tasks prior to the exposition of patterns into the resist layer. Thus, the ability to inspect and identify the physical defect in the resist layer plays an important role. The absence of any unwanted defect in resist is an ultimate requirement for preparation of precise and functional micro- or nano-patterned surfaces. Currently used wafer inspection systems are mostly utilized in semiconductor or microelectronic industry to inspect non-patterned or patterned wafers (integrated circuits, photomasks, … etc.) in order to achieve high yield production. Typically, they are based on acoustic micro-imaging, optical imaging or electron microscopy. This paper presents the design of a custom optical-based inspection device for small batch lithography production that allows scanning a wafer surface with an optical camera and by analyzing the captured images to determine the coordinates (X, Y), the size and the type of the defects in the resist layer. In addition, software responsible for driving the scanning device and for advanced image processing is presented. Keywords: Optical inspection, Resist layer, Non-patterned wafer, Quality control.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
J. P. Benedict ◽  
R. M. Anderson ◽  
S. J. Klepeis

Ion mills equipped with flood guns can perform two important functions in material analysis; they can either remove material or deposit material. The ion mill holder shown in Fig. 1 is used to remove material from the polished surface of a sample for further optical inspection or SEM ( Scanning Electron Microscopy ) analysis. The sample is attached to a pohshing stud type SEM mount and placed in the ion mill holder with the polished surface of the sample pointing straight up, as shown in Fig 2. As the holder is rotating in the ion mill, Argon ions from the flood gun are directed down at the top of the sample. The impact of Argon ions against the surface of the sample causes some of the surface material to leave the sample at a material dependent, nonuniform rate. As a result, the polished surface will begin to develop topography during milling as fast sputtering materials leave behind depressions in the polished surface.


2002 ◽  
Vol 722 ◽  
Author(s):  
Ram W. Sabnis ◽  
Mary J. Spencer ◽  
Douglas J. Guerrero

AbstractNovel organic, polymeric materials and processes of depositing thin films on electronics substrates by chemical vapor deposition (CVD) have been developed and the lithographic behavior of photoresist coated over these CVD films at deep ultraviolet (DUV) wavelength has been evaluated. The specific monomers synthesized for DUV applications include [2.2](1,4)- naphthalenophane, [2.2](9,10)-anthracenophane and their derivatives which showed remarkable film uniformity on flat wafers and conformality over structured topography wafers, upon polymerization by CVD. The chemical, physical and optical properties of the deposited films have been characterized by measuring parameters such as thickness uniformity, solubility, conformality, adhesion to semiconductor substrates, ultraviolet-visible spectra, optical density, optical constants, defectivity, and resist compatibility. Scanning electron microscope (SEM) photos of cross-sectioned patterned wafers showed verticle profiles with no footing, standing waves or undercut. Resist profiles down to 0.10 νm dense lines and 0.09 νm isolated lines were achieved in initial tests. CVD coatings generated 96-100% conformal films, which is a substantial improvement over commercial spin-on polymeric systems. The light absorbing layers have high optical density at 248 nm and are therefore capable materials for DUV lithography applications. CVD is a potentially useful technology to extend lithography for sub-0.15 νm devices. These films have potential applications in microelectronics, optoelectronics and photonics.


Author(s):  
Devdas Shetty ◽  
Tom Eppes ◽  
Nikolay Nazaryan ◽  
Claudio Campana ◽  
Jun Kondo

Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


Author(s):  
Yi-Chun Chen ◽  
Bo-Huei He ◽  
Shih-Sung Lin ◽  
Jonathan Hans Soeseno ◽  
Daniel Stanley Tan ◽  
...  

In this article, we discuss the backgrounds and technical details about several smart manufacturing projects in a tier-one electronics manufacturing facility. We devise a process to manage logistic forecast and inventory preparation for electronic parts using historical data and a recurrent neural network to achieve significant improvement over current methods. We present a system for automatically qualifying laptop software for mass production through computer vision and automation technology. The result is a reliable system that can save hundreds of man-years in the qualification process. Finally, we create a deep learning-based algorithm for visual inspection of product appearances, which requires significantly less defect training data compared to traditional approaches. For production needs, we design an automatic optical inspection machine suitable for our algorithm and process. We also discuss the issues for data collection and enabling smart manufacturing projects in a factory setting, where the projects operate on a delicate balance between process innovations and cost-saving measures.


Sign in / Sign up

Export Citation Format

Share Document