Partial Access Mode: New Method for Reducing Power Consumption of Dynamic Random Access Memory

2014 ◽  
Vol 22 (7) ◽  
pp. 1461-1469 ◽  
Author(s):  
Yoshiro Riho ◽  
Kazuo Nakazato
1992 ◽  
Vol 31 (Part 1, No. 12B) ◽  
pp. 4541-4544 ◽  
Author(s):  
Hirokazu Sayama ◽  
Shigenori Hara ◽  
Hiroshi Kimura ◽  
Yoshikazu Ohno ◽  
Shinichi Satoh ◽  
...  

2014 ◽  
Vol 543-547 ◽  
pp. 463-466 ◽  
Author(s):  
Xi Fan ◽  
Hou Peng Chen ◽  
Qian Wang ◽  
Yi Feng Chen ◽  
Zhi Tang Song ◽  
...  

A low-power 1Kb phase change random access memory (PCRAM) chip is designed. The chip uses 1T1R (one transistor one resistor) structure and titanium nitride (TiN) bottom electrode (BE) for reducing power consumption. Besides, the write property of the chip is improved by employing a ramp down pulse generator. The chip is fabricated in 130nm CMOS standard technology. The test result shows a 56% power reduction based on TiN BE compared with tungsten (W) BE, which predicts a new direction to realize the commercialization of PCRAM.


Author(s):  
Zongliang Huo ◽  
Seungjae Baik ◽  
Shieun Kim ◽  
In-seok Yeo ◽  
U-in Chung ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 4216-4222
Author(s):  
Songyi Yoo ◽  
In-Man Kang ◽  
Sung-Jae Cho ◽  
Wookyung Sun ◽  
Hyungsoon Shin

A capacitorless one-transistor dynamic random-access memory cell with a polysilicon body (poly-Si 1T-DRAM) has a cost-effective fabrication process and allows a three-dimensional stacked architecture that increases the integration density of memory cells. Also, since this device uses grain boundaries (GBs) as a storage region, it can be operated as a memory cell even in a thin body device. GBs are important to the memory characteristics of poly-Si 1T-DRAM because the amount of trapped charge in the GBs determines the memory’s data state. In this paper, we report on a statistical analysis of the memory characteristics of poly-Si 1T-DRAM cells according to the number and location of GBs using TCAD simulation. As the number of GBs increases, the sensing margin and retention time of memory cells deteriorate due to increasing trapped electron charge. Also, “0” state current increases and memory performance degrades in cells where all GBs are adjacent to the source or drain junction side in a strong electric field. These results mean that in poly-Si 1T-DRAM design, the number and location of GBs in a channel should be considered for optimal memory performance.


2004 ◽  
Vol 43 (5A) ◽  
pp. 2457-2461 ◽  
Author(s):  
Yoshikazu Tsunemine ◽  
Tomonori Okudaira ◽  
Keiichiro Kashihara ◽  
Akie Yutani ◽  
Hiroki Shinkawata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document