Analysis of Grain Boundary Dependent Memory Characteristics in Poly-Si One-Transistor Dynamic Random-Access Memory

2021 ◽  
Vol 21 (8) ◽  
pp. 4216-4222
Author(s):  
Songyi Yoo ◽  
In-Man Kang ◽  
Sung-Jae Cho ◽  
Wookyung Sun ◽  
Hyungsoon Shin

A capacitorless one-transistor dynamic random-access memory cell with a polysilicon body (poly-Si 1T-DRAM) has a cost-effective fabrication process and allows a three-dimensional stacked architecture that increases the integration density of memory cells. Also, since this device uses grain boundaries (GBs) as a storage region, it can be operated as a memory cell even in a thin body device. GBs are important to the memory characteristics of poly-Si 1T-DRAM because the amount of trapped charge in the GBs determines the memory’s data state. In this paper, we report on a statistical analysis of the memory characteristics of poly-Si 1T-DRAM cells according to the number and location of GBs using TCAD simulation. As the number of GBs increases, the sensing margin and retention time of memory cells deteriorate due to increasing trapped electron charge. Also, “0” state current increases and memory performance degrades in cells where all GBs are adjacent to the source or drain junction side in a strong electric field. These results mean that in poly-Si 1T-DRAM design, the number and location of GBs in a channel should be considered for optimal memory performance.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1051 ◽  
Author(s):  
Songyi Yoo ◽  
Woo-Kyung Sun ◽  
Hyungsoon Shin

Capacitorless one-transistor dynamic random-access memory cells that use a polysilicon body (poly-Si 1T-DRAM) have been studied to overcome the scaling issues of conventional one-transistor one-capacitor dynamic random-access memory (1T-1C DRAM). Generally, when the gate length of a silicon-on-insulator (SOI) structure metal-oxide-silicon field-effect transistor (MOSFET) is reduced, its body thickness is reduced in order to suppress the short-channel effects (SCEs). TCAD device simulations were used to investigate the transient performance differences between thin and thick-body poly-Si DRAMs to determine whether reduced body thickness is also appropriate for those devices. Analysis of the simulation results revealed that operating bias conditions are as important as body thickness in 1T-DRAM operation. Since a thick-body device has more trapped hole charge in its grain boundary (GB) than a thin-body device in both the “0” and “1” states, the transient performance of a thick-body device is better than a thin-body device regardless of the Write”1” drain voltage. We also determined that the SCEs in the memory cells can be improved by lowering the Write”1” drain voltage. We conclude that an optimization method for the body thickness and voltage conditions that considers both the cell’s SCEs and its transient performance is necessary for its development and application.


2001 ◽  
Vol 679 ◽  
Author(s):  
Jonas Berg ◽  
Stefan Bengtsson ◽  
Per Lundgren

ABSTRACTSimulations have been made to analyze the use of molecular resonant tunneling diodes for local refresh of DRAM (Dynamic Random Access Memory) cells. Local refresh can be provided by a latch consisting of a pair of resonant tunneling diodes connected to the storage capacitor of the cell. Such a solution would significantly reduce the standby power consumption of the DRAM cell. We have compared the requirements on the resonant tunneling diodes for proper refresh operation with the electrical properties of published molecules with resonant IV-curves. The simulations show that no molecules with resonant electrical properties published so far in the literature have properties making them useful for this particular application. This is true also for low temperature operation. The issues of maximum tolerable series resistance and of maximum tolerable fluctuations in the number of attached molecules have also been addressed. Our results show that the focus for development of molecules with resonant electrical properties should be to find molecules with resonance for lower applied voltages and lower current levels than the molecules published so far. If the synthesis of new molecules with attractive properties is successful the merging of silicon technology and molecular electronics, for instance for new generations of DRAM cells, is a realistic future path of microelectronics.


Sign in / Sign up

Export Citation Format

Share Document