Recrystallization and oxidation - competing processes during PECVD ultrathin silicon layer high temperature annealing

Author(s):  
Romuald B. Beck ◽  
Kamil Ber
Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Alloy Digest ◽  
1993 ◽  
Vol 42 (4) ◽  

Abstract Ferroperm is a soft magnetic alloy that contains 1% aluminum. This addition of aluminum combined with high-temperature annealing increases permeability and reduces coercivity without decreasing the high-saturation magnetization of pure iron. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming. Filing Code: FE-99. Producer or source: NKK Corporation.


2018 ◽  
Vol 42 (1) ◽  
pp. 149-158
Author(s):  
SHUANG XI ◽  
SHUANGSHUANG ZUO ◽  
YING LIU ◽  
YINLONG ZHU ◽  
YUTU YANG ◽  
...  

2020 ◽  
Vol 217 (14) ◽  
pp. 1900868 ◽  
Author(s):  
Shohei Teramura ◽  
Yuta Kawase ◽  
Yusuke Sakuragi ◽  
Sho Iwayama ◽  
Motoaki Iwaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document