In-vivo mechanical property assessment of a biodegradable polyurethane tissue construct on rat abdominal repair model using ultrasound elasticity imaging

Author(s):  
S. Tripathy ◽  
K. Takanari ◽  
R. Hashizume ◽  
Y. Hong ◽  
N. J. Amoroso ◽  
...  
Author(s):  
S. Tripathy ◽  
M. A. Simon ◽  
M. S. Sacks ◽  
J. C. Brigham ◽  
K. Kim

Quantitative assessment of the cardiac tissue mechanical property or contractility is essential for the prognosis and treatment of various cardiac diseases such as myocardial infarction, pulmonary hypertension, and heart failure. Current evaluation methods are either invasive or limited, mainly due to complex 3-dimensional (3D) geometry and deformation of a heart. 2D imaging techniques assume erroneous planar geometry and deformations, while available 3D imaging techniques have limited functional assessment. Correlation-based 3D ultrasound (US) elasticity imaging (UEI) provides both anatomical and functional information such as mechanical property change of the cardiac walls, which is important for diagnosis and monitoring of the treatment. Using finite element (FE) techniques, one and two ellipsoid chamber cardiac mechanical models were developed, and combined with 3D US radio frequency (RF) data generation program. 3D UEI on the synthesized 3D US volume images were quantitatively analyzed and compared with 2D UEI.


2013 ◽  
Vol 16 (6) ◽  
pp. 913-919 ◽  
Author(s):  
Rodolfo B. Anchieta ◽  
Marta Baldassarri ◽  
Fernando Guastaldi ◽  
Nick Tovar ◽  
Malvin N. Janal ◽  
...  

2021 ◽  
Author(s):  
Jun Wu ◽  
Qi-Juan Yuan ◽  
Li Wang ◽  
Jun Huang ◽  
Wei Zhao

Amino acid-based poly(ester amide) (PEA) has been utilized for various biomedical applications for its tunable mechanical property, good biocompatibility, and biodegradability. However, bioactive components have rarely been incorporated into the...


2006 ◽  
Vol 309-311 ◽  
pp. 801-804 ◽  
Author(s):  
S.B. Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

In order to overcome the disadvantage of commercialized PMMA bone cement, we have developed novel PMMA-based bone cement(7P3S) reinforced by 30 wt.% of bioactive CaO-SiO2 gel powders to induce the bioactivity as well as to increase mechanical property for the PMMA bone cement. The novel 7P3S bone cement hardened after mixing for about 7 minutes. For in vitro evaluation, apatite forming ability of it was investigated using SBF. When the novel 7P3S bone cement was soaked into SBF, it formed apatite on its surfaces within 1 week Furthermore; there is no decrease in its compressive strength within 9 weeks soaking in SBF. It is though that hardly decrease in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. In vivo evaluation of the novel 7P3S bone cement was carried out using rabbit. After implantion into rabbit tibia for several periods, the interface between novel bone cement and natural bone was evaluated by CT images. According to the results, the novel bone cement directly contact to the natural bone without fibrous tissue after implantation for 4 weeks. This results indicates that the newly developed 7P3S bone cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


2012 ◽  
Vol 6 (1) ◽  
pp. 226-234 ◽  
Author(s):  
Daniela Guzmán-Uribe ◽  
Keila Neri Alvarado Estrada ◽  
Amaury de Jesús Pozos Guillén ◽  
Silvia Martín Pérez ◽  
Raúl Rosales Ibáñez

Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix.


2010 ◽  
Vol 16 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Vy Lam ◽  
Tetsuro Wakatsuki

Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)–based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds—rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)—for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.


Sign in / Sign up

Export Citation Format

Share Document