Design of a PI controller for mitigating the power systems oscillation using approximate model matching technique in frequency domain

Author(s):  
Aprajita Salgotra ◽  
Somnath Pan
2006 ◽  
Vol 72 (715) ◽  
pp. 758-764 ◽  
Author(s):  
Kazuki EGUCHI ◽  
Kazunori KORENAGA ◽  
Makoto KUMON ◽  
Ikuro MIZUMOTO ◽  
Zenta IWAI

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1249 ◽  
Author(s):  
Nnaemeka Sunday Ugwuanyi ◽  
Xavier Kestelyn ◽  
Bogdan Marinescu ◽  
Olivier Thomas

Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3460 ◽  
Author(s):  
Ashraf Khalil ◽  
Ang Swee Peng

Open communication is an exigent need for future power systems, where time delay is unavoidable. In order to secure the stability of the grid, the frequency must remain within its limited range which is achieved through the load frequency control. Load frequency control signals are transmitted through communication networks which induce time delays that could destabilize power systems. So, in order to guarantee stability, the delay margin should be computed. In this paper, we present a new method for calculating the delay margin in load frequency control systems. The transcendental time delay characteristics equation is transformed into a frequency dependent equation. The spectral radius was used to find the frequencies at which the root crosses the imaginary axis. The crossing frequencies were determined through the sweeping test and the binary iteration algorithm. A one-area load frequency control system was chosen as a case study. The effectiveness of the proposed method was proven through comparison with the most recent published methods. The method shows its merit with less conservativeness and less computations. The impact of the proportional integral (PI) controller gains on the delay margin was investigated. It was found that increasing the PI controller gains reduces the delay margin.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5564
Author(s):  
Jong-Hwan Son ◽  
Han-Gyeol Kim ◽  
Hee-Jeong Han ◽  
Taejung Kim

Current precise geometric correction of Geostationary Ocean Color Imager (GOCI) image slots is performed by shoreline matching. However, it is troublesome to handle slots with few or no shorelines, or slots covered by clouds. Geometric correction by frequency matching has been proposed to handle these slots. In this paper, we further extend previous research on frequency matching by comparing the performance of three frequency domain matching methods: phase correlation, gradient correlation, and orientation correlation. We compared the performance of each matching technique in terms of match success rate and geometric accuracy. We concluded that the three frequency domain matching method with peak search range limits was comparable to geometric correction performance with shoreline matching. The proposed method handles translation only, and assumes that rotation has been corrected. We need to do further work on how to handle rotation by frequency matching.


Sign in / Sign up

Export Citation Format

Share Document