scholarly journals Morphological Segmentation of Urban Structures

Author(s):  
H. Gokhan Akcay ◽  
Selim Aksoy
1969 ◽  
Vol 8 (02) ◽  
pp. 84-90 ◽  
Author(s):  
A. W. Pratt ◽  
M. Pacak

The system for the identification and subsequent transformation of terminal morphemes in medical English is a part of the information system for processing pathology data which was developed at the National Institutes of Health.The recognition and transformation of terminal morphemes is restricted to classes of adjectivals including the -ING and -ED forms, nominals and homographic adjective/noun forms.The adjective-to-noun and noun-to-noun transforms consist basically of a set of substitutions of adjectival and certain nominal suffixes by a set of suffixes which indicate the corresponding nominal form(s).The adjectival/nominal suffix has a polymorphosyntactic transformational function if it has the property of being transformed into more than one nominalizing suffix (e.g., the adjectival suffix -IC can be substituted by a set of nominalizing suffixes -Ø, -A, -E, -Y, -IS, -IA, -ICS): the adjectival suffix has a monomorphosyntactic transformational property if there is only one admissible transform (e.g., -CIC → -X).The morphological segmentation and the subsequent transformations are based on the following principles:a. The word form is segmented according to the principle of »double consonant cut,« i.e., terminal characters following the last set of double consonants are analyzed and treated as a potential suffix. For practical purposes only such terminal suffixes of a maximum length of four have been analyzed.b. The principle that the largest segment of a word form common to both adjective and noun or to both noun stems is retained as a word base for transformational operations, and the non-identical segment is considered to be a »suffix.«The backward right-to-left character search is initiated by the identification of the terminal grapheme of the given word form and is extended to certain admissible sequences of immediately preceding graphemes.The nodes which represent fixed sequences of graphemes are labeled according to their recognition and/or transformation properties.The tree nodes are divided into two groups:a. productive or activatedb. non-productive or non-activatedThe productive (activated) nodes are sequences of sets of graphemes which possess certain properties, such as the indication about part-of-speech class membership, the transformation properties, or both. The non-productive (non-activated) nodes have the function of connectors, i.e., they specify the admissible path to the productive nodes.The computer program for the identification and transformation of the terminal morphemes is open-ended and is already operational. It will be extended to other sub-fields of medicine in the near future.


2021 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ben R. Evans ◽  
Iris Möller ◽  
Tom Spencer

Salt marshes are important coastal environments and provide multiple benefits to society. They are considered to be declining in extent globally, including on the UK east coast. The dynamics and characteristics of interior parts of salt marsh systems are spatially variable and can fundamentally affect biotic distributions and the way in which the landscape delivers ecosystem services. It is therefore important to understand, and be able to predict, how these landscape configurations may evolve over time and where the greatest dynamism will occur. This study estimates morphodynamic changes in salt marsh areas for a regional domain over a multi-decadal timescale. We demonstrate at a landscape scale that relationships exist between the topology and morphology of a salt marsh and changes in its condition over time. We present an inherently scalable satellite-derived measure of change in marsh platform integrity that allows the monitoring of changes in marsh condition. We then demonstrate that easily derived geospatial and morphometric parameters can be used to determine the probability of marsh degradation. We draw comparisons with previous work conducted on the east coast of the USA, finding differences in marsh responses according to their position within the wider coastal system between the two regions, but relatively consistent in relation to the within-marsh situation. We describe the sub-pixel-scale marsh morphometry using a morphological segmentation algorithm applied to 25 cm-resolution maps of vegetated marsh surface. We also find strong relationships between morphometric indices and change in marsh platform integrity which allow for the inference of past dynamism but also suggest that current morphology may be predictive of future change. We thus provide insight into the factors governing marsh degradation that will assist the anticipation of adverse changes to the attributes and functions of these critical coastal environments and inform ongoing ecogeomorphic modelling developments.


2007 ◽  
Vol 25 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Marco A.G. de Carvalho ◽  
Roberto de A. Lotufo ◽  
Michel Couprie

2008 ◽  
Vol 12 (1) ◽  
pp. 57-71
Author(s):  
George Hewitt

AbstractProtases ('if'-clauses) in the North West Caucasian language Abkhaz are mostly marked by either /-r/ or /-zα.r/, depending on the tense and/or type of verb (Stative or Dynamic) concerned. The article presents examples of this conditional usage and the role of protasis-type forms in both temporal and interrogative expressions as well as in complementiser-function. The complementisers in question share the semantic feature of irrealis with conditionals. A rhotic element is also found in the non-finite form of the Future I tense, in the Masdar (verbal noun), and in such converbs as the Purposives, the Resultative and the Future Absolute. The article attempts to link the semantic notions of futurity, potentiality, indefiniteness or general irrealis to the rhotic element and asks what might have been the historical development resulting in the forms attested today and thus their original morphological segmentation.


2021 ◽  
Author(s):  
Manfred A. Lange

<p>The environmental conditions in urban settings are subject to processes and conditions within cities, on the one hand, and have a strong bearing on the overall conditions and the quality of life of the cities’ inhabitants, on the other. The built environment, in general, and buildings and infrastructure, in particular, play a major role in shaping the urban environment. At the same time, environmental conditions affect strongly the conditions within and outside of buildings.</p><p>The continued growth of cities in the Eastern Mediterranean and Middle Eastern (EMME) region, the demise of environmental quality adds to the challenges faced by their inhabitants. Of the many factors contributing to these threats, climate change and its amplification in urban structures, the increasing load of pollutants in air and water and the rising numbers of dust storms as well as the growing amount of solid and liquid waste stand out.</p><p>The significant increase in the number of cars and the rising quantity of energy production has contributed to ever-worsening air quality in EMME cities. More specifically, urban road transport represents one of the major sources of air-borne pollutants in many of these cities and causes substantial threats to the health of their inhabitants.</p><p>The Middle East and North Africa (MENA) and the EMME region are major sources of desert dust storms that travel north and east to Europe and Asia, thereby strongly affecting cities and their air quality in the EMME. Dust storms and suspended bacteria and viruses pose serious consequences to communities in the EMME region and are likely to worsen due to ongoing climate change.</p><p>Present and future changes in climate conditions will have numerous adverse effects on the EMME region, in general, and on EMME cities, in particular. This includes extended heat waves as well as enhanced water scarcity for inhabitants and green spaces. In combination with poor air quality, this will cause severe health risks for urban populations as well as the need for increased and extended periods of space cooling in private, commercial and municipal buildings. The greater needs for water and energy in urban structures are interrelated and have been described by the Water-Energy Nexus. The higher demand for water is increasingly satisfied through desalination, which is particularly energy-intensive. The need for additional space cooling during hot spells in cities will require more electricity.</p><p>The high rate of population growth, ever-increasing urbanization, changes in lifestyles and economic expansion in the EMME countries result in steadily increasing volumes of solid and liquid waste. The waste problems are exacerbated by the rising number of displaced persons and refugees in growing camps in some of the EMME countries, particularly, in Turkey, Jordan and Lebanon. The huge quantity of daily produced sewage sludge in Middle Eastern countries presents a serious challenge due to its high treatment costs and risks to the environment and human health.</p><p>This paper will address some of these challenges, which call for holistic and interdisciplinary efforts to design effective and sustainable adaptation strategies in EMME cities.</p>


Sign in / Sign up

Export Citation Format

Share Document