Embedded low power analog CMOS Fuzzy Logic Controller chip for industrial applications

Author(s):  
Manikandan Pandiyan ◽  
Geetha Mani
2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Esmael Adem Esleman ◽  
Gürol Önal ◽  
Mete Kalyoncu

AbstractDifferent industrial applications frequently use overhead cranes for moving and lifting huge loads. It applies to civil construction, metallurgical production, rivers, and seaports. The primary purpose of this paper is to control the motion/position of the overhead crane using a PID controller using Genetic Algorithms (GA) and Bee Algorithms (BA) as optimization tools. Moreover, Fuzzy Logic modified PID Controller is applied to obtain better controller parameters. The mathematical model uses an analytical method, and the PID model employs Simulink in MATLAB. The paper presents the PID parameters determination with a different approach. The development of membership functions, fuzzy rules employ the Fuzzy Logic toolbox. Both inputs and outputs use triangular membership functions. The result shows that the optimized value of the PID controller with the Ziegler-Nichols approach is time-consuming and will provide only the initial parameters. However, PID parameters obtained with the optimization method using GA and BA reached the target values. The results obtained with the fuzzy logic controller (0.227% overshoot) show improvement in overshoot than the conventional PID controller (0.271% overshoot).


2002 ◽  
Vol 132 (2) ◽  
pp. 245-260 ◽  
Author(s):  
Hamed Peyravi ◽  
Abdollah Khoei ◽  
Khayrollah Hadidi

1970 ◽  
Vol 5 (1.) ◽  
Author(s):  
Ahmet Mehmet Karadeniz ◽  
Malek Alkayyali ◽  
Péter Tamás Szemes

This paper presents hybrid stepper motor (is a type of stepping motor) modelling and simulation which is widely used a kind of motor in industrial applications. In this study, the stepper motor was modelled using bond graph technique and simulation for desired position was executed on LabVIEWgraphical interface. Then, firstly a convenient PID controller was designed for position, speed and current and PID close loopresponse was obtained for position control. Then, PID parameters for each controller were arranged separately to obtain good response Secondly, Fuzzy Logic controller applied to the system and its response was obtained. Finally, both responses are compared. According to comparison, it was observed that Fuzzy Logic controller’s response is better than PID’s. (In this paper, all shown responses were observed for 120 degree desired position)


2009 ◽  
Vol 18 (04) ◽  
pp. 841-856
Author(s):  
WEIWEI SHAN ◽  
YAN LIANG ◽  
DONGMING JIN

This paper presents a low power CMOS analog integrated circuit of a Takagi–Sugeno fuzzy logic controller with voltage/voltage interface, small chip area, relatively high accuracy and medium speed, which is composed of several improved functional blocks. Z-shaped, Gaussian and S-shaped membership function circuits with compact structures are designed, performing well with low power, high speed and small areas. A current minimization circuit is provided with high accuracy and high speed. A follower-aggregation defuzzification block composed of several multipliers for center of gravity (COG) defuzzification is presented without using a division circuit. Based on these blocks, a two-input one-output singleton fuzzy controller with nine rules is designed under a CMOS 0.6 μm standard technology provided by CSMC. HSPICE simulation results show that this controller reaches an accuracy of ±3% with power consumption of only 3.5 mW (at ±2.5 V). The speed of this controller goes up to 0.625M Fuzzy Logic Inference per Second (FLIPS), which is fast enough for real-time control.


Author(s):  
Sudesh Rana

Now a day, in many industries different types of controllers (PD, PID, PLC, FLC etc.) are used. One of them is fuzzy logic controller. Here we develop a PID like fuzzy logic controller for industrial application, such application is water purification plant. For developing the PID like FLC, first we have to design a PID algorithm than we develop an algorithm for fuzzy logic controller. By comparing this two of controller we will develop a PID like FLC. A simple PID controller is sum of three type of controller proportional, integral and derivative controller, after simulated on MATLAB. Same cases we can be develop a structure of FLC for water purification plant. In the water purification plant raw water or ground water is promptly purified by injecting chemical rates at rates, related to water quality [13][2]. The feed of chemical rate judged and determined by the skilled operator. Here we try to develop an FLC algorithm so that the feed rate of coagulant is can be judged automatically without any skilled operator, than compose a PID like FLC for water purification plant process.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5323 ◽  
Author(s):  
José R. García-Martínez ◽  
Edson E. Cruz-Miguel ◽  
Roberto V. Carrillo-Serrano ◽  
Fortino Mendoza-Mondragón ◽  
Manuel Toledano-Ayala ◽  
...  

Motion control is widely used in industrial applications since machinery, robots, conveyor bands use smooth movements in order to reach a desired position decreasing the steady error and energy consumption. In this paper, a new Proportional-Integral-Derivative (PID) -type fuzzy logic controller (FLC) tuning strategy that is based on direct fuzzy relations is proposed in order to compute the PID constants. The motion control algorithm is composed by PID-type FLC and S-curve velocity profile, which is developed in C/C++ programming language; therefore, a license is not required to reproduce the code among embedded systems. The self-tuning controller is carried out online, it depends on error and change in error to adapt according to the system variations. The experimental results were obtained in a linear platform integrated by a direct current (DC) motor connected to an encoder to measure the position. The shaft of the motor is connected to an endless screw; a cart is placed on the screw to control its position. The rise time, overshoot, and settling time values measured in the experimentation are 0.124 s, 8.985% and 0.248 s, respectively. These results presented in part 6 demonstrate the performance of the controller, since the rise time and settling time are improved according to the state of the art. Besides, these parameters are compared with different control architectures reported in the literature. This comparison is made after applying a step input signal to the DC motor.


Sign in / Sign up

Export Citation Format

Share Document