Minimization of threshold voltage variation to AVT=1.3mVµm in bulk high-k/metal gated devices by dopant-diffusion control using integrated FSP-FLA technology

Author(s):  
Shinichi Kato ◽  
Takayuki Aoyama ◽  
Takashi Onizawa ◽  
Kazuto Ikeda ◽  
Yuzuru Ohji
2021 ◽  
Author(s):  
Rishu Chaujar ◽  
Mekonnen Getnet Yirak

Abstract In this work, junctionless double and triple metal gate high-k gate all around nanowire field-effect transistor-based APTES biosensor has been developed to study the impact of ITCs on device sensitivity. The analytical results were authenticated using ‘‘ATLAS-3D’’ device simulation tool. Effect of different interface trap charge on the output characteristics of double and triple metal gate high-k gate all around junctionless NWFET biosensor was studied. Output characteristics, like transconductance, output conductance,drain current, threshold voltage, subthreshold voltage and switching ratio, including APTES biomolecule, have been studied in both devices. 184% improvement has been investigated in shifting threshold voltage in a triple metal gate compared to a double metal gate when APTES biomolecule immobilizes on the nanogap cavity region under negative ITCs. Based on this finding, drain off-current ratio and shifting threshold voltage were considered as sensing metrics when APTES biomolecule immobilizes in the nanogap cavity under negative ITCs which is significant for Alzheimer's disease detection. We signifies a negative ITC has a positive impact on our proposed biosensor device compared to positive and neutral ITCs.


2019 ◽  
Vol 49 (3) ◽  
pp. 342-360
Author(s):  
Luxu WAN ◽  
Jianguo YANG ◽  
Daoming KE ◽  
Di WU ◽  
Fei YANG ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 1-6
Author(s):  
Alberto Vinícius Oliveira ◽  
Guilherme Vieira Gonçalves ◽  
Paula Ghedini Der Agopian ◽  
João Antonio Martino ◽  
Jérôme Mitard ◽  
...  

The implementation of a barrier potential layer underneath the channel region, well known as Ground Plane (GP) implantation, and its influence on the performance of relaxed germanium pFinFET devices is investigated in this manuscript. This study aims to explain the fin width dependence of the threshold voltage from experimental data and evaluates the ground plane doping concentration and its depth influence on relaxed p-type channel germanium FinFET parameters, as threshold voltage, transconductance and subthreshold swing, through Technology Computer-Aided Design (TCAD) numerical simulations. The threshold voltage variation reaches up to 80 mV from the narrowest device to the widest one, considering the studied range of ground plane doping concentration. Concerning the subthreshold swing parameter, neither the GP doping concentration, nor its depth play a significant role since the electrostatic coupling is predominant.


2007 ◽  
Vol 996 ◽  
Author(s):  
Dina H. Triyoso ◽  
Rama I. Hegde ◽  
Rich Gregory ◽  
David C. Gilmer ◽  
James K. Schaeffer ◽  
...  

AbstractIn this paper, various approaches to extend scalability of Hafnium-based dielectrics are reported. Among the three crystal phases of HfO2 (monoclinic, cubic and tetragonal), the tetragonal phase has been reported to have the highest dielectric constant. Tetragonal phase stabilization by crystallizing the thin HfO2 using a metal capping layer and by adding zirconium is demonstrated. The microstructure, morphology, optical properties and impurities of HfxZr1-xO2 dielectrics (for 0<x<1) are discussed. Subtle but important modification to high-k / Si interface characteristics resulting from addition of Zr into HfO2 is reported. To further boost the dielectric constant of hafnium-based dielectrics, incorporation of TiO2, which has been reported to have high dielectric constant, is explored. HfxZr1-xO2/TiO2 bilayer films were fabricated. 30 Å TiO2 films were deposited on a 5, 8, 12 or 15 Å HfxZr1-xO2 underlayer to determine the minimum thickness needed to maintain good thermal stability with Si substrate. CV and IV results indicated that 12-15 Å is the optimal thickness range for the HfxZr1-xO2 underlayer. A dielectric constant as high as 150 for TiO2 layer is extracted from TiO2 thickness series deposited on12 Å HfxZr1-xO2 underlayer. In addition to increasing the k-value of Hafnium-based dielectrics, it is important that the threshold voltage of these high-k devices is low. Here we report the use of thin Al2O3 capping layers to modulate PMOS threshold voltages. About 100 mV reduction in threshold voltage is achieved by capping HfO2 with a 5Å Al2O3 film. Finally, dielectric scaling by modifying the Si/high-k interfacial layer is attempted. Nitrogen incorporation into HfxZr1-xO2 is shown to be a simple and effective method to lower the capacitance equivalent thickness (CET) of Hafnium-based dielectrics.


2020 ◽  
Vol 41 (3) ◽  
pp. 373-376
Author(s):  
Sanghyun Ban ◽  
Hyejung Choi ◽  
Wootae Lee ◽  
Seokman Hong ◽  
Hwanjun Zang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document