Fault coverage of a long random test sequence estimated from a short simulation

Author(s):  
V. Prepin ◽  
R. David
2011 ◽  
Vol 474-476 ◽  
pp. 655-660
Author(s):  
Sheng Jia Zheng ◽  
Jian Jun Liu ◽  
Tie Jun Li

In order to provide low power consumption LFSR seed for BIST structure,this paper proposed a seed calculation Methods of dynamic-pseudo-random test sequence, it can reseed for LFSR and cut off test sequence of the low fault coverage effectively. The seed can generation fixed length pseudo-random test sequence, the sequence reduce test time and number of test vectors mostly. Experimental results that this technique can reduce the length of vectors, shorten test time and low power consumption based on without reduce the fault coverage


2017 ◽  
Vol 10 (04) ◽  
pp. 710-717
Author(s):  
A. Ahmad ◽  
D. Al Abri ◽  
S. S. Al Busaidi ◽  
M. M. Bait-Suwailam

The authors show that in a Built-In Self-Test (BIST) technique, based on linear-feedback shift registers, when the feedback connections in pseudo-random test-sequence generator and signature analyzer are images of each other and corresponds to primitive characteristic polynomial then behaviors of faults masking remains identical. The simulation results of single stuck-at faults show how the use of such feedback connections in pseudo-random test-sequence generator and signature analyzer yields to mask the same faults.


Author(s):  
Arbab Alamgir ◽  
Abu Khari A’ain ◽  
Norlina Paraman ◽  
Usman Ullah Sheikh

<p>Testing and verification of digital circuits is of vital importance in electronics industry. Moreover, key designs require preservation of their intellectual property that might restrict access to the internal structure of circuit under test. Random testing is a classical solution to black box testing as it generates test patterns without using the structural implementation of the circuit under test. However, random testing ignores the importance of previously applied test patterns while generating subsequent test patterns. An improvement to random testing is Antirandom that diversifies every subsequent test pattern in the test sequence. Whereas, computational intensive process of distance calculation restricts its scalability for large input circuit under test. Fixed sized candidate set adaptive random testing uses predetermined number of patterns for distance calculations to avoid computational complexity. A combination of max-min distance with previously executed patterns is carried out for each test pattern candidate. However, the reduction in computational complexity reduces the effectiveness of test set in terms of fault coverage. This paper uses a total cartesian distance based approach on fixed sized candidate set to enhance diversity in test sequence. The proposed approach has a two way effect on the test pattern generation as it lowers the computational intensity along with enhancement in the fault coverage. Fault simulation results on ISCAS’85 and ISCAS’89 benchmark circuits show that fault coverage of the proposed method increases up to 20.22% compared to previous method.</p>


Author(s):  
Artur Jutman ◽  
Igor Aleksejev ◽  
Jaan Raik

This chapter further details the topic of embedded self-test directing the reader towards the aspects of embedded test generation and test sequence optimization. The authors will brief the basics of widely used pseudorandom test generators and consider different techniques targeting the optimization of fault coverage characteristics of generated sequences. The authors will make the main focus on one optimization technique that is applicable to reseeding-based test generators and that uses a test compaction methodology. The technique exploits a great similarity in the way the faults are covered by pseudorandom sequences and by patterns generated for sequential designs. Hence, the test compaction methodology previously developed for the latter problem can be successfully reused in embedded testing.


1999 ◽  
Vol 38 (01) ◽  
pp. 50-55 ◽  
Author(s):  
P. F. de Vries Robbé ◽  
A. L. M. Verbeek ◽  
J. L. Severens

Abstract:The problem of deciding the optimal sequence of diagnostic tests can be structured in decision trees, but unmanageable bushy decision trees result when the sequence of two or more tests is investigated. Most modelling techniques include tests on the basis of gain in certainty. The aim of this study was to explore a model for optimizing the sequence of diagnostic tests based on efficiency criteria. The probability modifying plot shows, when in a specific test sequence further testing is redundant and which costs are involved. In this way different sequences can be compared. The model is illustrated with data on urinary tract infection. The sequence of diagnostic tests was optimized on the basis of efficiency, which was either defined as the test sequence with the least number of tests or the least total cost for testing. Further research on the model is needed to handle current limitations.


2012 ◽  
Vol 58 (2) ◽  
pp. 147-152
Author(s):  
Michal Mardiak ◽  
Jaroslav Polec

Objective Video Quality Method Based on Mutual Information and Human Visual SystemIn this paper we present the objective video quality metric based on mutual information and Human Visual System. The calculation of proposed metric consists of two stages. In the first stage of quality evaluation whole original and test sequence are pre-processed by the Human Visual System. In the second stage we calculate mutual information which has been utilized as the quality evaluation criteria. The mutual information was calculated between the frame from original sequence and the corresponding frame from test sequence. For this testing purpose we choose Foreman video at CIF resolution. To prove reliability of our metric were compared it with some commonly used objective methods for measuring the video quality. The results show that presented objective video quality metric based on mutual information and Human Visual System provides relevant results in comparison with results of other objective methods so it is suitable candidate for measuring the video quality.


Sign in / Sign up

Export Citation Format

Share Document