Multi-Platform Hardware In The Loop (HIL) Simulation for Decentralized Swarm Communication Using ROS and GAZEBO

Author(s):  
Saran Khaliq ◽  
Shahzeb Ahsan ◽  
M. Danish Nisar
Author(s):  
Scott Driscoll ◽  
James D. Huggins ◽  
Wayne J. Book

Hardware-in-the-Loop (HIL) Simulation enables testing of an actual physical component of a system under a variety of conditions without the expense of full scale testing. In hydraulic systems, flows or pressures that interface with the component in question are controlled by a computer running a simulation designed to emulate a complete system under real operating conditions. Typically, servo valves are used as actuators to control the flows or pressures. This paper investigates the use of electric servo-motors coupled to hydraulic gear motors as alternative actuators, and discusses some of the advantages and disadvantages that motors have in comparison to valves. A demonstration HIL simulation involving a mobile proportional flow control valve attached to an emulated backhoe is described, and results are compared to data from a real backhoe.


SIMULATION ◽  
2019 ◽  
Vol 96 (4) ◽  
pp. 375-385 ◽  
Author(s):  
Yuan Yuan ◽  
Zhiwen Zhao ◽  
Tianhong Zhang

In the hardware-in-the-loop (HIL) simulation of the fuel control unit (FCU) for aero-engines, the back pressure has a great impact on the metered fuel, thus influencing the confidence of the simulation. During the practical working process of an aero-engine, the back pressure of the FCU is influenced by the combined effect of the pressure of the combustion chamber, the resistance of the spray nozzles, and the resistance of the distribution valve. There is a need to study the the mimicking technique of FCU back pressure. This paper models the fuel system of an aero-engine so as to reveal the impact of FCU back pressure on the metered fuel and come up with a scheme to calculate the equivalent FCU back pressure. After analyzing the requirements for mimicking the pressure, an automatic regulating facility is designed to adjust the FCU back pressure in real time. Finally, experiments are carried out to verify its performance. Results show that the mimicking technique of back pressure is well suited for application in HIL simulation. It is able to increase the confidence of the simulation and provide guidance to the implementation of mimicking the FCU back pressure.


2020 ◽  
Vol 172 ◽  
pp. 1047-1052
Author(s):  
P.C. Nissimagoudar ◽  
Venkatesh Mane ◽  
Gireesha H M ◽  
Nalini C. Iyer

atp magazin ◽  
2017 ◽  
Vol 59 (07-08) ◽  
pp. 24-33 ◽  
Author(s):  
Dominik Aufderheide ◽  
Marco Antonio Rodriguez ◽  
Andreas Schwung ◽  
Luigi Di Matteo

Aufgrund der Notwendigkeit, die Qualität der Herstellung und Installation eines gravimetrischen Dosiersystems für Schüttgüter zu verbessern, wurde ein automatisches Testsystem entwickelt, das auf Basis einer Hardware-in-the-Loop (HiL)-Simulation in der Lage ist, die notwendige Werksabnahme des gesamten Systems durchzuführen. Das im Beitrag beschriebene Testsystem besteht im Wesentlichen aus einer Echtzeit-HiL-Simulation und den notwendigen Schnittstellen auf Basis von Standardkomponenten, einer Benutzerschnittstelle zur Definition der Testroutinen und einer Verifikationsmaschine (verification engine) für die selbsttätige Datensammlung und nachgelagerte Validierung und Protokollierung. Auch wenn die Applikation derzeit noch im Rahmen von Tests weiter evaluiert wird, konnte bereits gezeigt werden, dass das vorliegende Testsystem und die zugrundeliegende Architektur in der Lage sind, die notwendigen Testprozeduren vollständig durchzuführen; eine gewählte modulare Struktur garantiert die notwendige Erweiterbarkeit für andere Applikationen.


Author(s):  
Pushkar Agashe ◽  
Yang Li ◽  
Bo Chen

This paper presents model-based design and hardware-in-the-loop (HIL) simulation of engine lean operation. The functionalities of the homogeneous combustion subsystem in engine Electronic Control Unit (ECU) in dSPACE Automotive Simulation Models (ASM) are first analyzed. To control the gasoline engine in lean operation without the drop of output torque, the combustion subsystem in engine ECU is modified by introducing two control loops, torque modifier and fuel multiplier. The performance of these two controllers is evaluated by HIL simulation using a dSPACE HIL simulator. The HIL simulation models, including vehicle plant model and softECUs in HIL simulator and engine lean control model in hardware engine ECU are modeled using model-based design. With HIL simulation, the designed engine control strategies can be immediately tested to evaluate the overall vehicle performance. The HIL simulation results show that the designed lean combustion control strategy can reduce fuel consumption and is able to meet the torque requirement at lean engine operating conditions.


SIMULATION ◽  
2019 ◽  
Vol 96 (2) ◽  
pp. 169-183
Author(s):  
Saumya R Sahoo ◽  
Shital S Chiddarwar

Omnidirectional robots offer better maneuverability and a greater degree of freedom over conventional wheel mobile robots. However, the design of their control system remains a challenge. In this study, a real-time simulation system is used to design and develop a hardware-in-the-loop (HIL) simulation platform for an omnidirectional mobile robot using bond graphs and a flatness-based controller. The control input from the simulation model is transferred to the robot hardware through an Arduino microcontroller input board. For feedback to the simulation model, a Kinect-based vision system is used. The developed controller, the Kinect-based vision system, and the HIL configuration are validated in the HIL simulation-based environment. The results confirm that the proposed HIL system can be an efficient tool for verifying the performance of the hardware and simulation designs of flatness-based control systems for omnidirectional mobile robots.


2016 ◽  
Vol 106 (03) ◽  
pp. 119-124
Author(s):  
C. Scheifele ◽  
A. Lechler ◽  
A. Prof. Verl

Bei einer Hardware-in-the-Loop (HiL)-Simulation wird die reale Steuerungstechnik mit einer experimentierfähigen Maschinensimulation verbunden. Soll das Bewegungsverhalten des Materialflusses in der Maschinensimulation zur Generierung von Steuerungssignalen berechnet werden, so müssen die harten Echtzeitanforderungen einer HiL-Simulation eingehalten werden. Dieser Beitrag betrachtet verschiedene Materialflussmodelle und gibt das Ziel eines mehrskaligen Simulationsmodells für die HiL-Simulation vor.   A Hardware-in-the-Loop (HiL) simulation couples real control technology with an experimental machine simulation. When computing the movement behavior of a material flow in the machine simulation to generate control signals, the hard real-time requirements of a HiL-simulation must be considered. This article checks different material flow models and defines the objective of a multi-scale material flow model for HiL-Simulation.


Sign in / Sign up

Export Citation Format

Share Document