Learned maintenance of pain: Muscle tension reduces central nervous system processing of painful stimulation in chronic and subchronic pain patients

1999 ◽  
Vol 36 (6) ◽  
pp. 755-764 ◽  
Author(s):  
Barbel Knost ◽  
Herta Flor ◽  
Niels Birbaumer ◽  
Markus M. Schugens
2015 ◽  
Vol 3;18 (3;5) ◽  
pp. 223-235
Author(s):  
Jo Nijs

Background: Chronic neck pain is a common problem with a poorly understood pathophysiology. Often no underlying structural pathology can be found and radiological imaging findings are more related to age than to a patient’s symptoms. Besides its common occurrence, chronic idiopathic neck pain is also very disabling with almost 50% of all neck pain patients showing moderate disability at long-term follow-up. Central sensitization (CS) is defined as “an amplification of neural signaling within the central nervous system that elicits pain hypersensitivity,” “increased responsiveness of nociceptive neurons in the central nervous system to their normal or subthreshold afferent input,” or “an augmentation of responsiveness of central neurons to input from unimodal and polymodal receptors.” There is increasing evidence for involvement of CS in many chronic pain conditions. Within the area of chronic idiopathic neck pain, there is consistent evidence for the presence and clinical importance of CS in patients with traumatic neck pain, or whiplash-associated disorders. However, the majority of chronic idiopathic neck pain patients are unrelated to a traumatic injury, and hence are termed chronic idiopathic non-traumatic neck pain. When comparing whiplash with idiopathic non-traumatic neck pain, indications for different underlying mechanisms are found. Objective: The goal of this article was to review the existing scientific literature on the role of CS in patients with chronic idiopathic non-traumatic neck pain. Study Design: Systematic review. Setting: All selected studies were case control studies. Methods: A systematic search of existing, relevant literature was performed via the electronic databases Medline, Embase, Web of Science, Cinahl, PubMed, and Google Scholar. All titles and abstracts were checked to identify relevant articles. An article was considered eligible if it met following inclusion criteria: (1) participants had to be human adults (> 18 years) diagnosed with idiopathic non-traumatic chronic (present for at least 3 months) neck pain; (2) papers had to report outcomes related to CS; and (3) articles had to be full-text reports or original research (no abstracts, case-reports, reviews, meta-analysis, letters, or editorials). Results: Six articles were found eligible after screening the title, abstract and – when necessary – the full text for in- and exclusion criteria. All selected studies were case-control studies. Overall, results regarding the presence of CS were divergent. While the majority of patients with chronic traumatic neck pain (i.e. whiplash) are characterized by CS, this is not the case for patients with chronic idiopathic neck pain. The available evidence suggests that CS is not a major feature of chronic idiopathic neck pain. Individual cases might have CS pain, but further work should reveal how they can be characterized. Limitations: Very few studies available. Conclusions: Literature about CS in patients with chronic idiopathic non-traumatic neck pain is rare and results from the available studies provide an inconclusive message. CS is not a characteristic feature of chronic idiopathic and non-traumatic neck pain, but can be present in some individuals of the population. In the future a subgroup with CS might be defined, but based on current knowledge it is not possible to characterize this subgroup. Such information is important in order to provide targeted treatment. Key words: Central sensitization, hypersensitivity, chronic pain, neck pain, idiopathic, nontraumatic, pressure pain thresholds, review


2019 ◽  
Vol 42 ◽  
Author(s):  
Kevin B. Clark

Abstract Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
J.N. Turner ◽  
M. Siemens ◽  
D. Szarowski ◽  
D.N. Collins

A classic preparation of central nervous system tissue (CNS) is the Golgi procedure popularized by Cajal. The method is partially specific as only a few cells are impregnated with silver chromate usualy after osmium post fixation. Samples are observable by light (LM) or electron microscopy (EM). However, the impregnation is often so dense that structures are masked in EM, and the osmium background may be undesirable in LM. Gold toning is used for a subtle but high contrast EM preparation, and osmium can be omitted for LM. We are investigating these preparations as part of a study to develop correlative LM and EM (particularly HVEM) methodologies in neurobiology. Confocal light microscopy is particularly useful as the impregnated cells have extensive three-dimensional structure in tissue samples from one to several hundred micrometers thick. Boyde has observed similar preparations in the tandem scanning reflected light microscope (TSRLM).


Author(s):  
C.J. Wilson

Most central nervous system neurons receive synaptic input from hundreds or thousands of other neurons, and the computational function of such neurons results from the interactions of inputs on a large and complex scale. In most situations that have yielded to a partial analysis, the synaptic inputs to a neuron are not alike in function, but rather belong to distinct categories that differ qualitatively in the nature of their effect on the postsynaptic cell, and quantitatively in the strength of their influence. Many factors have been demonstrated to contribute to synaptic function, but one of the simplest and best known of these is the geometry of the postsynaptic neuron. The fundamental nature of the relationship between neuronal shape and synaptic effectiveness was established on theoretical grounds prior to its experimental verification.


Sign in / Sign up

Export Citation Format

Share Document