Accounting for both automated recording unit detection space and signal recognition performance in acoustic surveys: A protocol applied to the cryptic and critically endangered Night Parrot ( Pezoporus occidentalis )

2021 ◽  
Author(s):  
Nicholas P. Leseberg ◽  
William N. Venables ◽  
Stephen A. Murphy ◽  
Nigel A. Jackett ◽  
James E. M. Watson
Author(s):  
Kai Zhao ◽  
Dan Wang

Aiming at the problem of low recognition rate in speech recognition methods, a speech recognition method in multi-layer perceptual network environment is proposed. In the multi-layer perceptual network environment, the speech signal is processed in the filter by using the transfer function of the filter. According to the framing process, the speech signal is windowed and framing processed to remove the silence segment of the speech signal. At the same time, the average energy of the speech signal is calculated and the zero crossing rate is calculated to extract the characteristics of the speech signal. By analyzing the principle of speech signal recognition, the process of speech recognition is designed, and the speech recognition in multi-layer perceptual network environment is realized. The experimental results show that the speech recognition method designed in this paper has good speech recognition performance


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3293 ◽  
Author(s):  
Hongquan Qu ◽  
Tingliang Feng ◽  
Yuan Zhang ◽  
Yanping Wang

Optical fiber pre-warning systems (OFPS) based on Φ-OTDR are applied to many different scenarios such as oil and gas pipeline protection. The recognition of fiber vibration signals is one of the most important parts of this system. According to the characteristics of small sample set, we choose stochastic configuration network (SCN) for recognition. However, due to the interference of environmental and mechanical noise, the recognition effect of vibration signals will be affected. In order to study the effect of noise on signal recognition performance, we recognize noisy optical fiber vibration signals, which superimposed analog white Gaussian noise, white uniform noise, Rayleigh distributed noise, and exponentially distributed noise. Meanwhile, bootstrap sampling (bagging) and AdaBoost ensemble learning methods are combined with original SCN, and Bootstrap-SCN, AdaBoost-SCN, and AdaBoost-Bootstrap-SCN are proposed and compared for noisy signals recognition. Results show that: (1) the recognition rates of two classifiers combined with AdaBoost are higher than the other two methods over the entire noise range; (2) the recognition for noisy signals of AdaBoost-Bootstrap-SCN is better than other methods in recognition of noisy signals.


2021 ◽  
Vol 13 (15) ◽  
pp. 2867
Author(s):  
Haoyu Zhang ◽  
Lei Yu ◽  
Yushi Chen ◽  
Yinsheng Wei

Jamming is a big threat to the survival of a radar system. Therefore, the recognition of radar jamming signal type is a part of radar countermeasure. Recently, convolutional neural networks (CNNs) have shown their effectiveness in radar signal processing, including jamming signal recognition. However, most of existing CNN methods do not regard radar jamming as a complex value signal. In this study, a complex-valued CNN (CV-CNN) is investigated to fully explore the inherent characteristics of a radar jamming signal, and we find that we can obtain better recognition accuracy using this method compared with a real-valued CNN (RV-CNN). CV-CNNs contain more parameters, which need more inference time. To reduce the parameter redundancy and speed up the recognition time, a fast CV-CNN (F-CV-CNN), which is based on pruning, is proposed for radar jamming signal fast recognition. The experimental results show that the CV-CNN and F-CV-CNN methods obtain good recognition performance in terms of accuracy and speed. The proposed methods open a new window for future research, which shows a huge potential of CV-CNN-based methods for radar signal processing.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhijun Guo ◽  
Shuai Liu

In the process of wireless image transmission, there are a large number of interference signals, but the traditional interference signal recognition system is limited by various modulation modes, it is difficult to accurately identify the target signal, and the reliability of the system needs to be further improved. In order to solve this problem, a wireless image transmission interference signal recognition system based on deep learning is designed in this paper. In the hardware part, STM32F107VT and SI4463 are used to form a wireless controller to control the execution of each instruction. In the software part, aiming at the time-domain characteristics of the interference signal, the feature vector of the interference signal is extracted. With the support of GAP-CNN model, the interference signal is recognized through the training and learning of feature vector. The experimental results show that the packet loss rate of the designed system is less than 0.5%, the recognition performance is good, and the reliability of the system is improved.


1991 ◽  
Vol 34 (2) ◽  
pp. 415-426 ◽  
Author(s):  
Richard L. Freyman ◽  
G. Patrick Nerbonne ◽  
Heather A. Cote

This investigation examined the degree to which modification of the consonant-vowel (C-V) intensity ratio affected consonant recognition under conditions in which listeners were forced to rely more heavily on waveform envelope cues than on spectral cues. The stimuli were 22 vowel-consonant-vowel utterances, which had been mixed at six different signal-to-noise ratios with white noise that had been modulated by the speech waveform envelope. The resulting waveforms preserved the gross speech envelope shape, but spectral cues were limited by the white-noise masking. In a second stimulus set, the consonant portion of each utterance was amplified by 10 dB. Sixteen subjects with normal hearing listened to the unmodified stimuli, and 16 listened to the amplified-consonant stimuli. Recognition performance was reduced in the amplified-consonant condition for some consonants, presumably because waveform envelope cues had been distorted. However, for other consonants, especially the voiced stops, consonant amplification improved recognition. Patterns of errors were altered for several consonant groups, including some that showed only small changes in recognition scores. The results indicate that when spectral cues are compromised, nonlinear amplification can alter waveform envelope cues for consonant recognition.


1990 ◽  
Vol 29 (04) ◽  
pp. 337-340 ◽  
Author(s):  
H. A. Pipberger ◽  
H. V. Pipberger ◽  
C. D. McManus

AbstractThe AVA program combines a thirty-year history with an approach that remains innovative; namely: multivariate statistical analysis on orthogonal ECG leads. Its diagnostic reference base includes only diagnoses independently verified by non-ECG criteria. The diagnostic module assesses probabilities of nine alternative disease categories, based on QRS-T parameters; or four other categories in case of conduction defects. Probabilities of left or right atrial overload are also computed. The program also recognizes wall injury, T-wave abnormalities, electrolyte disturbances, myocardial ischemia, and makes differential diagnoses between strain and digitalis effects. An arrhythmia classification module can generate any of 40 rhythm statements. Signal recognition is based on the spatial velocity function. The program has been translated to a microcomputer version.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


2018 ◽  
Vol 1 (2) ◽  
pp. 34-44
Author(s):  
Faris E Mohammed ◽  
Dr. Eman M ALdaidamony ◽  
Prof. A. M Raid

Individual identification process is a very significant process that resides a large portion of day by day usages. Identification process is appropriate in work place, private zones, banks …etc. Individuals are rich subject having many characteristics that can be used for recognition purpose such as finger vein, iris, face …etc. Finger vein and iris key-points are considered as one of the most talented biometric authentication techniques for its security and convenience. SIFT is new and talented technique for pattern recognition. However, some shortages exist in many related techniques, such as difficulty of feature loss, feature key extraction, and noise point introduction. In this manuscript a new technique named SIFT-based iris and SIFT-based finger vein identification with normalization and enhancement is proposed for achieving better performance. In evaluation with other SIFT-based iris or SIFT-based finger vein recognition algorithms, the suggested technique can overcome the difficulties of tremendous key-point extraction and exclude the noise points without feature loss. Experimental results demonstrate that the normalization and improvement steps are critical for SIFT-based recognition for iris and finger vein , and the proposed technique can accomplish satisfactory recognition performance. Keywords: SIFT, Iris Recognition, Finger Vein identification and Biometric Systems.   © 2018 JASET, International Scholars and Researchers Association    


Sign in / Sign up

Export Citation Format

Share Document