Pathogenesis of necrotising enterocolitis: The impact of the altered gut microbiota and antibiotic exposure in preterm infants

2020 ◽  
Author(s):  
Ali Ahmed Raba ◽  
Anne O'Sullivan ◽  
Jan Miletin
Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


2021 ◽  
Vol 5 (1SP) ◽  
pp. 21
Author(s):  
Zakiudin Munasir

ABSTRACT Background: After birth, preterm infants face numerous challenges, including short and long-term morbidities, to survive and grow well with impaired immune and gastrointestinal systems. According to data from 184 countries, preterm birth rate ranges from 5-18%, accounting for 35% of all new born deaths. Purpose: This literature review aimed to summarize the evidence for the impact of prematurity on immune system development and the benefit of prebiotics on gut microbiota and immune responses. Discussion: Various studies in this narrative literature review showed that preterm infants have both qualitative and quantitative immune response deficits compared to term infants. Preterm newborns also have impaired intestinal immunity, underdeveloped intestinal mucosa barrier, and gut dysbiosis, which predisposes them to life-threatening infections. Early balanced gut microbiota in infants believed to be essential for adequate intestinal physiological functions and immune system maturation. The use of prebiotics, including human milk oligosaccharides (HMOs) in human breast milk, has been found to decrease the risk of various infections and cognitive impairment. A previous study found that prebiotic oligosaccharides supplementation was well-tolerated, significantly increased Bifidobacteria growth, and reduced the presence of gut pathogens. Conclusions: There was robust evidence that breast milk and prebiotics supplementation may support the gut microbiome and immune system in preterm infants. However, different types of synthetic prebiotics offer different benefits, and the protective effect seems to depend on the supplementation duration and dosage.


2021 ◽  
Vol 8 (14) ◽  
pp. 1-88
Author(s):  
Nicholas Embleton ◽  
Janet Berrington ◽  
Stephen Cummings ◽  
Jon Dorling ◽  
Andrew Ewer ◽  
...  

Background Preterm infants have high rates of morbidity, especially from late-onset sepsis and necrotising enterocolitis. Lactoferrin is an anti-infective milk protein that may act through effects on gut bacteria, metabolites and epithelial cell function. The impact of supplemental lactoferrin in reducing late-onset sepsis was explored in the Enteral LactoFerrin In Neonates (ELFIN) trial. Objectives The Mechanisms Affecting the Gut of Preterm Infants in Enteral feeding (MAGPIE) study was nested within the ELFIN trial and aimed to determine the impact of lactoferrin on gut microbiota and bacterial function, and changes preceding disease onset. We aimed to explore impacts on the stool bacteria and faecal/urinary metabolome using gas and liquid chromatography–mass spectrometry, and explore immunohistological pathways in resected tissue. Methods Preterm infants from 12 NHS hospitals were enrolled in the study, and daily stool and urine samples were collected. Local sample collection data were combined with ELFIN trial data from the National Perinatal Epidemiology Unit, Oxford. The longitudinal impact of lactoferrin in healthy infants was determined, and samples that were collected before disease onset were matched with samples from healthy control infants. Established, quality-controlled 16S ribonucleic acid, gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry analyses were conducted. Validated databases and standardised workflows were used to identify bacteria and metabolites. Tissue samples from infants undergoing surgery and matched controls were analysed. Results We recruited 479 preterm infants (mean gestation of 28.4 ± 2.3 weeks) and collected > 33,000 usable samples from 467 infants. 16S ribonucleic acid bacterial analysis was conducted on samples from 201 infants, of whom 20 had necrotising enterocolitis and 51 had late-onset sepsis, along with samples from healthy matched controls to explore longitudinal changes. The greatest change in relative bacterial abundance over time was observed in Staphylococcus, which decreased from 42% at aged 7–9 days to only 2% at aged 30–60 days (p < 0.001). Small but significant differences in community composition were observed between samples in each ELFIN trial group (R 2 = 0.005; p = 0.04). Staphylococcus (p < 0.01), Haemophilus (p < 0.01) and Lactobacillus (p = 0.01) showed greater mean relative abundance in the placebo group than in the lactoferrin group. Gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry analyses showed that lactoferrin had limited impact on the metabolome. Liquid chromatography–mass spectrometry showed significant metabolite differences between necrotising enterocolitis or late-onset sepsis infants and healthy controls. The resected gut tissue analysis revealed 82 differentially expressed genes between healthy and necrotic tissue. Limitations Although we recruited a large number of infants, collecting daily samples from every infant is challenging, especially in the few days immediately preceding disease onset. Conclusion We conducted a large mechanistic study across multiple hospital sites and showed that, although lactoferrin significantly decreased the level of Staphylococcus and other key pathogens, the impact was smaller than those of other clinical variables. Immunohistochemistry identified multiple inflammatory pathways leading to necrotising enterocolitis and showed that the use of NHS pathology archive tissue is feasible in the context of a randomised controlled trial. Future work We observed significant changes in the stool and urinary metabolome in cases preceding late-onset sepsis or necrotising enterocolitis, which provide metabolic targets for a future mechanistic and biomarker study. Trial registration Current Controlled Trials ISRCTN12554594. Funding This project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council (MRC) and National Institute for Health Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation; Vol. 8, No. 14. See the NIHR Journals Library website for further project information.


2017 ◽  
Vol 107 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Tarek Itani ◽  
Carole Ayoub Moubareck ◽  
Imad Melki ◽  
Clotilde Rousseau ◽  
Irène Mangin ◽  
...  

2018 ◽  
Vol 10 (02) ◽  
pp. 206-213 ◽  
Author(s):  
M. Matsuyama ◽  
L. F. Gomez-Arango ◽  
N. M. Fukuma ◽  
M. Morrison ◽  
P. S. W. Davies ◽  
...  

AbstractThe objective of this study was to investigate the impact of the most commonly cited factors that may have influenced infants’ gut microbiota profiles at one year of age: mode of delivery, breastfeeding duration and antibiotic exposure. Barcoded V3/V4 amplicons of bacterial 16S-rRNA gene were prepared from the stool samples of 52 healthy 1-year-old Australian children and sequenced using the Illumina MiSeq platform. Following the quality checks, the data were processed using the Quantitative Insights Into Microbial Ecology pipeline and analysed using the Calypso package for microbiome data analysis. The stool microbiota profiles of children still breastfed were significantly different from that of children weaned earlier (P&lt;0.05), independent of the age of solid food introduction. Among children still breastfed, Veillonella spp. abundance was higher. Children no longer breastfed possessed a more ‘mature’ microbiota, with notable increases of Firmicutes. The microbiota profiles of the children could not be differentiated by delivery mode or antibiotic exposure. Further analysis based on children’s feeding patterns found children who were breastfed alongside solid food had significantly different microbiota profiles compared to that of children who were receiving both breastmilk and formula milk alongside solid food. This study provided evidence that breastfeeding continues to influence gut microbial community even at late infancy when these children are also consuming table foods. At this age, any impacts from mode of delivery or antibiotic exposure did not appear to be discernible imprints on the microbial community profiles of these healthy children.


2021 ◽  
Vol 5 (1SP) ◽  
pp. 27
Author(s):  
Bernie Endyarni Medise

ABSTRACT Background: Indonesia comes in the fifth for the greatest number of preterm births. Preterm infants may inflict various complication as the result of underdeveloped immunity, affecting their growth and development in the long run until they reach adult phase. Such complications could be prevented through adequate nutrition fulfillment. Purpose: This article aimed to elaborate the characteristics of growth and development of premature babies, long term effect on the development and the impact of immunity and gut health of preterm infants in supporting their growth and development. Methods: References cited in this article were obtained from the latest primary literature within the last 10 years. Discussion: The rate and ability of infants to perform catch-up growth depends on the birth weight and gestation age, at which the lower birth weight and lower gestational age had slower rate. Brain structures that of preterm infants differ compared to the term, and these changes give rise to various clinical outcomes, including long term emotional, behavioral changes, cognitive and executive functioning. Immature immune system in preterm infants reduces the protective ability by innate and adaptive immunity in overcoming pathogens compared to term infants, including gut microbiota prematurity which affects nutrition absorption and growth and development catch up ability. Appropriate and adequate nutrition supplementation has shown beneficial effects in promoting the growth of normal gut flora, which allow better absorption of nutrition and therefore enhancing growth rate and supporting the development of preterm infants. Conclusions: Optimal growth and development of preterm infants are supported by sufficient nutrition supplementation to support the growth of gut microbiota, facilitating the catch-up growth and development of premature infants and immune system maturity.


Author(s):  
Andreea Matei ◽  
Louise Montalva ◽  
Alexa Goodbaum ◽  
Giuseppe Lauriti ◽  
Augusto Zani

AimTo determine (1) the incidence of neurodevelopmental impairment (NDI) in necrotising enterocolitis (NEC), (2) the impact of NEC severity on NDI in these babies and (3) the cerebral lesions found in babies with NEC.MethodsSystematic review: three independent investigators searched for studies reporting infants with NDI and a history of NEC (PubMed, Medline, Cochrane Collaboration, Scopus). Meta-analysis: using RevMan V.5.3, we compared NDI incidence and type of cerebral lesions between NEC infants versus preterm infants and infants with medical vs surgical NEC.ResultsOf 10 674 abstracts screened, 203 full-text articles were examined. In 31 studies (n=2403 infants with NEC), NDI incidence was 40% (IQR 28%–64%) and was higher in infants with surgically treated NEC (43%) compared with medically managed NEC (27%, p<0.00001). The most common NDI in NEC was cerebral palsy (18%). Cerebral lesions: intraventricular haemorrhage (IVH) was more common in NEC babies (26%) compared with preterm infants (18%; p<0.0001). There was no difference in IVH incidence between infants with surgical NEC (25%) and those treated medically (20%; p=0.4). The incidence of periventricular leukomalacia (PVL) was significantly increased in infants with NEC (11%) compared with preterm infants (5%; p<0.00001).ConclusionsThis study shows that a large proportion of NEC survivors has NDI. NEC babies are at higher risk of developing IVH and/or PVL than babies with prematurity alone. The degree of NDI seems to correlate to the severity of gut damage, with a worse status in infants with surgical NEC compared with those with medical NEC.Trial registration numberCRD42019120522.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ping Zhou ◽  
Yanxia Zhou ◽  
Bin Liu ◽  
Zhenchao Jin ◽  
Xueling Zhuang ◽  
...  

ABSTRACT Intrapartum antibiotic prophylaxis reduces the risk of infection to a mother and neonate, but antibiotic-mediated maternal and neonatal microbiota dysbiosis increases other health risks to newborn infants. We studied the impact of perinatal antibiotic prophylaxis on the microbiota in mothers and newborns with full-term or preterm delivery. Ninety-eight pregnant women and their neonates were divided into the following four groups: full term without antibiotic exposure (FT), full term with antibiotic exposure (FTA), preterm without antibiotic exposure (PT), and preterm with antibiotic exposure (PTA). Bacterial composition was analyzed by sequencing the 16S rRNA gene from maternal vaginal swabs (V) and neonatal meconium (F). The results showed that in maternal vaginal and neonatal meconium microbiota, FT and PT groups had a higher load of Lactobacillus spp. than did the FTA and PTA groups. In addition, whether in the mother or newborn, the dissimilarity in microbiota between FT and PT was the lowest compared to that between other groups. Compared to the FT and PT groups, the dissimilarity in microbial structures between the vagina and meconium decreased in the FTA and PTA groups. The health outcome of infants reveals an association between early-onset sepsis and antibiotic-mediated microbiota dysbiosis. In conclusion, perinatal antibiotic exposure is related to the establishment of gut microbiota and health risks in newborns. Promoting the rational usage of antibiotics with pregnant women will improve neonatal health. IMPORTANCE Perinatal antibiotic prophylaxis is an effective method for preventing group B Streptococcus (GBS) infection in newborns. Antibiotic exposure unbalances women’s vaginal microbiota, which is associated with the establishment of the newborn gut microbiota. However, the influence of perinatal antibiotic exposure on neonatal gut microbiota colonization and health outcomes remains unclear. In this study, we found that perinatal antibiotic exposure induced microbiota dysbiosis in a woman’s vagina and the neonatal gut, and we highlight a significant decrease in the abundance of Lactobacillus spp. The influence of antibiotic use on the microbiota was greater than that from gestational age. Additionally, full-term newborns without antibiotic exposure had no evidence of early-onset sepsis, whereas in full-term or preterm newborns with antibiotic exposure before birth, at least one infant was diagnosed with early-onset sepsis. These results suggest an association between perinatal antibiotic exposure and microbial dysbiosis in maternal vaginal and neonatal gut environments, which may be related to the occurrence of early-onset sepsis.


Sign in / Sign up

Export Citation Format

Share Document