Haematology and serum biochemistry results for anaesthetised northern brown bandicoots ( Isoodon macrourus ) in south east Queensland

Author(s):  
C Langhorne ◽  
L McMichael ◽  
J Hoy ◽  
S Kopp ◽  
P Murray
Keyword(s):  

Ehrlichia canis is a tick-borne rickettsia. It can cause canine monocytic ehrlichiosis (CME). Infected dogs are often reported to have changes in their blood values, such as anemia, thrombocytopenia, increased liver enzymes, and increased kidney function values. This study aimed to collect data that may be related to infected dogs, including age, gender, breed, weight, close-open housing system, the use of ectoparasiticides products. The sample comprised 57 infected dogs. Collecting hematology and serum biochemistry changes in comparison with the reference values of dogs detected with Ehrlichia canis from 2017-2019, Thonburi District, Bangkok, Thailand was also carried out. In summary, dogs infected with Ehrlichia canis mostly included mixed-breed dogs aged between 1 and 10 years. There were no differences in body weight or housing systems. Dogs that had never used ectoparasiticide products or used them intermittently were infected more often (by 7.14 times) than protected. Clinical hematology and serum biochemistry found anemia, thrombocytopenia, and increased liver enzymes.


2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Cheng-Jui Lin ◽  
Chi-Feng Pan ◽  
Chih-Kuang Chuang ◽  
Fang-Ju Sun ◽  
Duen-Jen Wang ◽  
...  

Background/Aims. Previous studies have reported p-cresyl sulfate (PCS) was related to endothelial dysfunction and adverse clinical effect. We investigate the adverse effects of PCS on clinical outcomes in a chronic kidney disease (CKD) cohort study.Methods. 72 predialysis patients were enrolled from a single medical center. Serum biochemistry data and PCS were measured. The clinical outcomes including cardiovascular event, all-cause mortality, and dialysis event were recorded during a 3-year follow-up.Results. After adjusting other independent variables, multivariate Cox regression analysis showed age (HR: 1.12,P=0.01), cardiovascular disease history (HR: 6.28,P=0.02), and PCS (HR: 1.12,P=0.02) were independently associated with cardiovascular event; age (HR: 0.91,P<0.01), serum albumin (HR: 0.03,P<0.01), and PCS level (HR: 1.17,P<0.01) reached significant correlation with dialysis event. Kaplan-Meier analysis revealed that patients with higher serum p-cresyl sulfate (>6 mg/L) were significantly associated with cardiovascular and dialysis event (log rankP=0.03, log rankP<0.01, resp.).Conclusion. Our study shows serum PCS could be a valuable marker in predicting cardiovascular event and renal function progression in CKD patients without dialysis.


2020 ◽  
Vol 6 (2) ◽  
pp. 205511692094147
Author(s):  
Christopher Hoey ◽  
George Nye ◽  
Angela Fadda ◽  
Janet Bradshaw ◽  
Emi N Barker

Case summary A 7-month-old Siberian cat was presented for investigation of acute onset multifocal neurological deficits. Neurological examination documented dull mental status and an ambulatory left hemiparesis. Serum biochemistry documented marked hyperglobulinaemia. MRI of the brain identified marked leptomeningeal contrast enhancement extending along the brainstem caudally to involve the cranial cervical spinal cord. MRI of the cervical spine further identified a subarachnoid diverticulum that extended from the level of the obex to the C2–C3 vertebrae. Cerebrospinal fluid quantitative RT-PCR was positive for the presence of feline coronavirus. Histopathology revealed pyogranulomatous meningitis and choroid plexitis, uveitis and nephritis. Relevance and novel information This article describes the first reported case of a subarachnoid diverticulum associated with feline infectious peritonitis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Robin Mesnage ◽  
Maxime Teixeira ◽  
Daniele Mandrioli ◽  
Laura Falcioni ◽  
Mariam Ibragim ◽  
...  

AbstractHealth effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.


2021 ◽  
pp. 002367722110185
Author(s):  
Brian J Smith ◽  
Patrick W Hanley ◽  
Ousmane Maiga ◽  
Maarit N Culbert ◽  
Marissa J Woods ◽  
...  

Complete blood count, serum chemistry values, and biological reference intervals were compared between two age groups (34–49 and 84–120 days old) of healthy male and female laboratory raised natal multimammate mice ( Mastomys natalensis). Blood was collected via cardiocentesis under isoflurane anesthesia. Data sets of machine automated complete blood counts and clinical chemistries were analyzed. Significant differences between sex and age groups of the data sets were defined. The baseline hematologic and serum biochemistry values described here can improve interpretation of laboratory research using natal multimammate mice.


2021 ◽  
pp. 1098612X2110137
Author(s):  
James R Templeman ◽  
Kylie Hogan ◽  
Alexandra Blanchard ◽  
Christopher PF Marinangeli ◽  
Alexandra Camara ◽  
...  

Objectives The objective of this study was to verify the safety of policosanol supplementation for domestic cats. The effects of raw and encapsulated policosanol were compared with positive (L-carnitine) and negative (no supplementation) controls on outcomes of complete blood count, serum biochemistry, energy expenditure, respiratory quotient and physical activity in healthy young adult cats. Methods The study was a replicated 4 × 4 complete Latin square design. Eight cats (four castrated males, four spayed females; mean age 3.0 ± 1.0 years; mean weight 4.36 ± 1.08 kg; mean body condition score 5.4 ± 1.4) were blocked by sex and body weight then randomized to treatment groups: raw policosanol (10 mg/kg body weight), encapsulated policosanol (50 mg/kg body weight), L-carnitine (200 mg/kg body weight) or no supplementation. Treatments were supplemented to a basal diet for 28 days with a 1-week washout between periods. Food was distributed equally between two offerings to ensure complete supplement consumption (first offering) and measure consumption time (second offering). Blood collection (lipid profile, complete blood count, serum biochemistry) and indirect calorimetry (energy expenditure, respiratory quotient) were conducted at days 0, 14 and 28 of each period. Activity monitors were worn 7 days prior to indirect calorimetry and blood collection. Data were analyzed using a repeated measures mixed model (SAS, v.9.4). Results Food intake and body weight were similar among treatments. There was no effect of treatment on lipid profile, serum biochemistry, activity, energy expenditure or respiratory quotient ( P >0.05); however, time to consume a second meal was greatest in cats fed raw policosanol ( P <0.05). Conclusions and relevance These data suggest that policosanol is safe for feline consumption. Further studies with cats demonstrating cardiometabolic risk factors are warranted to confirm whether policosanol therapy is an efficacious treatment for hyperlipidemia and obesity.


Author(s):  
Jill T. Schappa Faustich ◽  
John P. Carney ◽  
Matthew T. Lahti ◽  
Benjamin L. Zhang ◽  
Richard W. Bianco

Abstract Purpose Sheep are the standard preclinical model for assessing safety of novel replacement heart valves, yet the anatomic and pathologic effects of invasive surgery, including those involving cardiopulmonary bypass (CPB), are unknown. Thus, we aimed to determine the gross, hematologic and biochemical effects of sham mitral and aortic replacement valve procedures in sheep to establish a useful control for evaluation of novel replacement valves. Methods Six control sheep were examined without any surgical intervention. Six sham mitral valve replacements (MVR) and six sham aortic valve replacements (AVR) were performed on 12 sheep. Complete blood counts and serum biochemistry were performed throughout the study. Sheep were sacrificed with a necropsy performed at 90 days. Results Renal infarcts (RIs) were the most frequently observed lesion, averaging 4.7 in control sheep, 2.5 with MVR and 5.8 with AVR. The number of infarcts strongly correlated with total estimated area of infarcted kidney (r = .84, p < .01). Additional cardiac interventions were significantly correlated with increased numbers of RIs (r = .85, p < .01). There was no correlation between number of RIs and time on CPB, or between AVR and MVR procedures. Conclusion The sheep model for AVR and MVR requires invasive surgery and CPB, which are associated with background anatomic and pathologic changes, especially in cases with additional surgical cardiac interventions. These findings serve as a critical control for future evaluation and development of novel replacement valves in order to distinguish device-related safety issues from expected outcomes of the surgical procedure and normal background changes in sheep.


Sign in / Sign up

Export Citation Format

Share Document