A new class of serotonin 5‐HT 2A /5‐HT 2C receptor inverse agonists: Synthesis, molecular modeling, in vitro and in vivo pharmacology of novel 2‐aminotetralins

Author(s):  
Austen B. Casey ◽  
Munmun Mukherjee ◽  
Ryan P. McGlynn ◽  
Meng Cui ◽  
Stephen J. Kohut ◽  
...  
2021 ◽  
pp. 105205
Author(s):  
Menna A. Ewida ◽  
Heba A. Ewida ◽  
Mahmoud S. Ahmed ◽  
Heba A. Allam ◽  
Ramzia I. ElBagary ◽  
...  

2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1838
Author(s):  
Naglaa M. Ahmed ◽  
Mahmoud M. Youns ◽  
Moustafa K. Soltan ◽  
Ahmed M. Said

Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79 %) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.


2018 ◽  
Author(s):  
Dayo O. Adewole ◽  
Laura A. Struzyna ◽  
James P. Harris ◽  
Ashley D. Nemes ◽  
Justin C. Burrell ◽  
...  

AbstractAchievements in intracortical neural interfaces are compromised by limitations in specificity and long-term performance. A biological intermediary between devices and the brain may offer improved specificity and longevity through natural synaptic integration with deep neural circuitry, while being accessible on the brain surface for optical read-out/control. Accordingly, we have developed the first “living electrodes” comprised of implantable axonal tracts protected within soft hydrogel cylinders for the biologically-mediated monitoring/modulation of brain activity. Here we demonstrate the controlled fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of neuronal activity within these engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex in vivo as a proof-of-concept for this neural interface paradigm. The creation and functional validation of these preformed, axon-based “living electrodes” is a critical step towards developing a new class of biohybrid neural interfaces to probe and modulate native circuitry.


2020 ◽  
Author(s):  
Ozgun Kocabiyik ◽  
Valeria Cagno ◽  
Paulo Jacob Silva ◽  
Yong Zhu ◽  
Laura Sedano ◽  
...  

AbstractInfluenza is one of the most widespread viral infections worldwide and represents a major public health problem. The risk that one of the next pandemics is caused by an influenza strain is very high. It is very important to develop broad-spectrum influenza antivirals to be ready for any possible vaccine shortcomings. Anti-influenza drugs are available but they are far from ideal. Arguably, an ideal antiviral should target conserved viral domains and be virucidal, i.e. irreversibly inhibit viral infectivity. Here, we describe a new class of broad-spectrum anti-influenza macromolecules that meets these criteria and displays exceedingly low toxicity. These compounds are based on a cyclodextrin core modified on its primary face with long hydrophobic linkers terminated in 6’sialyl-N-acetyllactosamine (6’SLN) or 3’SLN. SLN enables nanomolar inhibition of the viruses while the hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 pandemic influenza strain ex vivo. Importantly, we show that, in mice, the compounds provide therapeutic efficacy when administered 24h post-infection allowing 90% survival as opposed to no survival for the placebo and oseltamivir..


Stroke ◽  
2019 ◽  
Vol 50 (Suppl_1) ◽  
Author(s):  
Mohanram Sivaraja ◽  
Daniel Clemens ◽  
Sivan Sizikov ◽  
Chengpei Xu ◽  
Bo Yang ◽  
...  

2019 ◽  
Vol 156 (6) ◽  
pp. S-623
Author(s):  
Julia B. Krajewska ◽  
Jakub Wlodarczyk ◽  
Przemyslaw Taciak ◽  
Remigiusz Szczepaniak ◽  
Jakub Fichna

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4636 ◽  
Author(s):  
Sabina Podlewska ◽  
Ryszard Bugno ◽  
Lucja Kudla ◽  
Andrzej J. Bojarski ◽  
Ryszard Przewlocki

Molecular modeling approaches are an indispensable part of the drug design process. They not only support the process of searching for new ligands of a given receptor, but they also play an important role in explaining particular activity pathways of a compound. In this study, a comprehensive molecular modeling protocol was developed to explain the observed activity profiles of selected µ opioid receptor agents: two G protein-biased µ opioid receptor agonists (PZM21 and SR-17018), unbiased morphine, and the β-arrestin-2-biased agonist, fentanyl. The study involved docking and molecular dynamics simulations carried out for three crystal structures of the target at a microsecond scale, followed by the statistical analysis of ligand–protein contacts. The interaction frequency between the modeled compounds and the subsequent residues of a protein during the simulation was also correlated with the output of in vitro and in vivo tests, resulting in the set of amino acids with the highest Pearson correlation coefficient values. Such indicated positions may serve as a guide for designing new G protein-biased ligands of the µ opioid receptor.


2012 ◽  
Vol 302 (5) ◽  
pp. E540-E551 ◽  
Author(s):  
Christopher J. Lynch ◽  
Qing Zhou ◽  
Show-Ling Shyng ◽  
David J. Heal ◽  
Sharon C. Cheetham ◽  
...  

Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg−1·day−1) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 KATP KCOs where rimonabant and ibipinabant allosterically regulated 3H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 KATP channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.


Sign in / Sign up

Export Citation Format

Share Document