scholarly journals Mud volcanoes and dissolution structures as kinematic markers during salt tectonic deformation

2021 ◽  
Author(s):  
Chris Kirkham ◽  
Joe Cartwright
Author(s):  
C. Jatu

Mud volcanoes in Grobogan are referred as the Grobogan Mud Volcanoes Complex in Central Java where there is evidence of oil seepages. This comprehensive research is to determine the characteristics and hydrocarbon potential of the mud volcanoes in the Central Java region as a new opportunity for hydrocarbon exploration. The Grobogan Mud Volcano Complex consists of eight mud volcanoes that have its characteristics based on the study used the geological surface data and seismic literature as supporting data on eight mud volcanoes. The determination of geological surface characteristics is based on geomorphological analysis, laboratory analysis such as petrography, natural gas geochemistry, water analysis, mud geochemical analysis and biostratigraphy. Surface data and subsurface data are correlated, interpreted, and validated to make mud volcano system model. The purpose of making the mud volcanoes system model is to identify the hydrocarbon potential in Grobogan. This research proved that each of the Grobogan Mud Volcanoes has different morphological forms. Grobogan Mud Volcanoes materials are including muds, rock fragments, gas, and water content with different elemental values. Based on this research result, there are four mud volcano systems models in Central Java, they are Bledug Kuwu, Maesan, Cungkrik, and Crewek type. The source of the mud is from Ngimbang and Tawun Formation (Middle Eocene to Early Miocene) from biostratigraphy data and it been correlated with seismic data. Grobogan Mud Volcanoes have potential hydrocarbons with type III kerogen of organic matter (gas) and immature to early mature level based on TOC vs HI cross plot. The main product are thermogenic gas and some oil in relatively small quantities. Water analysis shows that it has mature sodium chloride water. This analysis also shows the location was formed within formations that are deposited in a marine environment with high salinity. Research of mud volcanos is rarely done in general. However, this comprehensive research shows the mud volcano has promising hydrocarbon potential and is a new perspective on hydrocarbon exploration.


Author(s):  
Homayoun Khoshravan ◽  
Homayoun Khoshravan

The main goal of the research is to analyze the global warming impact on Urmia lake vulnerabiliy and hazard. By the study of topographic maps, satellite images and field research, the various types of coasts were identified: mud flats, salt marshes, sandy or cliffed coasts, and islands. Moreover the interpretation of seismic profiles, has led to recognize so important morphological features in the lake bed, such as: erosive channels, colos, mud volcanoes, the raised sandy masses and under water mounts. The main results illustrate the variable morphological behavior of Urmia Lake in different parts of the lake.


2019 ◽  
pp. 675-697
Author(s):  
Matías C. Ghiglione ◽  
Gonzalo Ronda ◽  
Rodrigo J. Suárez ◽  
Inés Aramendía ◽  
Vanesa Barberón ◽  
...  

2019 ◽  
Vol 93 (3) ◽  
pp. 331-342
Author(s):  
Ahsan ul Haq ◽  
S. K. Pandita ◽  
Yudhbir Singh ◽  
G. M. Bhat ◽  
Shiv Jyoti Pandey ◽  
...  

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Dolores Jiménez-López ◽  
Ana Sierra ◽  
Teodora Ortega ◽  
Sandra Manzano-Medina ◽  
M. Carmen Fernández-Puga ◽  
...  

2021 ◽  
Vol 759 ◽  
pp. 144225
Author(s):  
Diana Di Luccio ◽  
Iber M. Banda Guerra ◽  
Luis E. Correa Valero ◽  
David F. Morales Giraldo ◽  
Sabino Maggi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


Sign in / Sign up

Export Citation Format

Share Document