scholarly journals Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis

2018 ◽  
Vol 109 (3) ◽  
pp. 642-655 ◽  
Author(s):  
Jing He ◽  
Yiting Jin ◽  
Mingxia Zhou ◽  
Xiaoyan Li ◽  
Wanna Chen ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2948 ◽  
Author(s):  
Wesuk Kang ◽  
Dabin Choi ◽  
Taesun Park

Ultraviolet (UV) radiation is a major cause of skin photoaging, which is mainly characterized by dryness and wrinkle formation. In the current study, we investigated the anti-photoaging effects of dietary suberic acid, a naturally occurring photochemical, using UVB-irradiated hairless mice. Mice were exposed to UVB three times weekly and fed diets containing three different suberic acid concentrations (0.05%, 0.1% and 0.2%) for 10 weeks. It was found that suberic acid inhibited UVB-induced skin dryness, wrinkle formation, and epidermal thickness in hairless mice. In parallel with phenotypic changes, suberic acid attenuated UVB-induced matrix metalloproteinase (MMP) genes (MMP1a, MMP1b, MMP3, and MMP9), while accelerating collagen genes including collagen type I alpha 1 chain (COL1A1), COL1A2, and COL3A1 and hyaluronic acid synthases genes (HAS1, HAS2 and HAS3). We further demonstrated that suberic acid upregulated the molecules involved in the transforming growth factor–β (TGF-β)/SMAD pathway, but downregulated the molecules participating in the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling in UVB-irritated hairless mice. Collectively, we propose that suberic acid may be a promising agent for treating skin photoaging.


2002 ◽  
Vol 115 (15) ◽  
pp. 3193-3206 ◽  
Author(s):  
Andrei V. Bakin ◽  
Cammie Rinehart ◽  
Anne K. Tomlinson ◽  
Carlos L. Arteaga

Transforming growth factor β (TGFβ) contributes to tumor progression by inducing an epithelial to mesenchymal transdifferentiation(EMT) and cell migration. We found that TGFβ-induced EMT was blocked by inhibiting activation of p38 mitogen-activated protein kinase (MAPK) with H-7,a protein kinase C inhibitor, and with SB202190, a direct inhibitor of p38MAPK. Inhibition of the p38MAPK pathway affected TGFβ-mediated phosphorylation of ATF2, but did not inhibit phosphorylation of Smad2. SB202190 impaired TGFβ-mediated changes in cell shape and reorganization of the actin cytoskeleton. Forced expression of dominant-negative (DN) MAPK kinase 3 (MKK3) inhibited TGFβ-mediated activation of p38MAPK and EMT. Expression of DN-p38α impaired TGFβ-induced EMT. Inhibition of p38MAPK blocked TGFβ-induced migration of non-tumor and tumor mammary epithelial cells. TGFβ induced activation of the p38MAPK pathway within 15 minutes. Expression of TGFβ type II (TβRII) and type I(TβRI/Alk5) kinase-inactive receptors blocked EMT and activation of p38MAPK, whereas expression of constitutively active Alk5-T204D resulted in EMT and phosphorylation of MKK3/6 and p38MAPK. Finally, dominant-negative Rac1N17 blocked TGFβ-induced activation of the p38MAPK pathway and EMT,suggesting that Rac1 mediates activation of the p38MAPK pathway. These studies suggest that the p38MAPK pathway is required for TGFβ-mediated EMT and cell migration.


2012 ◽  
Vol 124 (3) ◽  
pp. 191-202 ◽  
Author(s):  
Mona Sedeek ◽  
Alex Gutsol ◽  
Augusto C. Montezano ◽  
Dylan Burger ◽  
Aurelie Nguyen Dinh Cat ◽  
...  

Nox (NADPH oxidase)-derived ROS (reactive oxygen species) have been implicated in the development of diabetic nephropathy. Of the Nox isoforms in the kidney, Nox4 is important because of its renal abundance. In the present study, we tested the hypothesis that GKT136901, a Nox1/4 inhibitor, prevents the development of nephropathy in db/db (diabetic) mice. Six groups of male mice (8-week-old) were studied: (i) untreated control db/m, (ii) low-dose GKT136901-treated db/m (30 mg/kg of body weight per day), (iii) high-dose GKT136901-treated db/m (90 mg/kg of body weight per day), (iv) untreated db/db; (v) low dose GKT136901-treated db/db; and (vi) high-dose GKT136901-treated db/db. GKT136901, in chow, was administered for 16 weeks. db/db mice developed diabetes and nephropathy as evidenced by hyperglycaemia, albuminuria and renal injury (mesangial expansion, tubular dystrophy and glomerulosclerosis). GKT136901 treatment had no effect on plasma glucose or BP (blood pressure) in any of the groups. Plasma and urine TBARSs (thiobarbituric acid-reacting substances) levels, markers of systemic and renal oxidative stress, respectively, were increased in diabetic mice. Renal mRNA expression of Nox4, but not of Nox2, increased, Nox1 was barely detectable in db/db. Expression of the antioxidant enzyme SOD-1 (superoxide dismutase 1) decreased in db/db mice. Renal content of fibronectin, pro-collagen, TGFβ (transforming growth factor β) and VCAM-1 (vascular cell adhesion molecule 1) and phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) were augmented in db/db kidneys, with no change in p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). Treatment reduced albuminuria, TBARS and renal ERK1/2 phosphorylation and preserved renal structure in diabetic mice. Our findings suggest a renoprotective effect of the Nox1/4 inhibitor, possibly through reduced oxidative damage and decreased ERK1/2 activation. These phenomena occur independently of improved glucose control, suggesting GKT136901-sensitive targets are involved in complications of diabetes rather than in the disease process.


Sign in / Sign up

Export Citation Format

Share Document