Assessing the Economic Implications of Reduced Water Availability and Better Management Practices on Representative Farms in Southern Alberta

Author(s):  
Jason Grant ◽  
Everett Peterson ◽  
K. K. Klein
2018 ◽  
Vol 22 (5) ◽  
pp. 2795-2809 ◽  
Author(s):  
Hafsa Ahmed Munia ◽  
Joseph H. A. Guillaume ◽  
Naho Mirumachi ◽  
Yoshihide Wada ◽  
Matti Kummu

Abstract. Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status – i.e. they are not yet dependent on upstream water to avoid stress – but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning of management practices in transboundary basins.


1977 ◽  
Vol 9 (2) ◽  
pp. 49-55
Author(s):  
Harry W. Ayer ◽  
David W. Hogan

Solid waste disposal is a significant problem. It has been estimated that almost a ton of solid waste is collected per year per capita in the United States. Solid waste disposal, especially in rural areas, is frequently done in an unsanitary, potentially dangerous and often unslightly manner. To cope with these solid waste problems, both state legislatures and the Environmental Protection Agency are now in the process of requiring communities which presently utilize unsanitary disposal practices to upgrade their facilities and management practices. A sanitary landfill operation1 is usually the least-cost method of accomplishing these requirements, especially in rural areas.2 Quality facilities and management practices are not costless, however. It is estimated that the U.S. spends more than $4.5 billion each year on solid waste management, and more than 80 percent of this amount is for collection.


2020 ◽  
Author(s):  
Po-An Lin ◽  
Chia-Ming Liu ◽  
Jia-Ang Ou ◽  
Cheng-Han Sun ◽  
Wen-Po Chuang ◽  
...  

AbstractPlants grow under reduced water availability can have divergent effects on insect herbivores, in some instances producing benefits to them. However, the forces mediating these positive impacts remain mostly unclear. We conducted a manipulative field study using a specialist herbivore Pieris rapae, and its host plant, Rorippa indica, in two populations to identify how water availability impacts overall plant quality and multitrophic interactions. We observed that R. indica growing under low water availability led to higher survival of P. rapae larvae. The increase in survival of eggs and larvae was related to the reduced abundance of other herbivores and natural enemies. Water availability had differential impacts on members of the herbivore community through changes in plant quality. Low water availability decreased the quality of R. indica to most herbivores as indicated by reduced abundance in the field and decreased relative growth rate in feeding assays. In contrast, the performance of P. rapae larvae were not affected by differences in sympatric R. indica grown under different water availability. These results indicate that local P. rapae possess some physiological adaptation to overcome fluctuations in host quality. Our findings illustrate that reduced water availability is beneficial to a specialist herbivore, but detrimental to most other herbivores. Our work highlights the complex roles of the arthropod communities associated with plants in determining the impacts of water availability on insect herbivores.


2006 ◽  
Vol 54 (2) ◽  
pp. 173 ◽  
Author(s):  
R. H. Froend ◽  
P. L. Drake

The consideration of phreatophyte response to changes in water availability is important in identifying ecological water requirements in water-resource planning. Although much is known about water-source partitioning and intra- and interspecific variability in groundwater use by Banksia woodland species, little is known about the response of these species to groundwater draw-down. This paper describes a preliminary study into the use of xylem cavitation vulnerability as a measure of species response to reduced water availability. A response function and critical range in percentage loss of conductance is identified for four Banksia woodland overstorey species. Similarity in the vulnerability curves of B. attenuata R.Br. and B. menziesii R.Br. at low tensions supports the notion that they occupy a similar ecohydrological niche, as defined by their broad distributions relative to depth to groundwater. B. ilicifolia R.Br., however, as an obligate phreatophyte, has a range restricted to environments of higher water availability and shallower depth to groundwater and this is reflected in greater vulnerability to cavitation (relative to other Banksia) at lower tensions. The wetland tree Melaleuca preissiana Schauer generally expressed a greater vulnerability at any given xylem water potential (Ψx). This paper identifies the range in Ψx within which there is an elevated risk of tree mortality, and represents a first step towards quantifying the critical thresholds in the response of Banksia woodland species to reduced water availability.


Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 276 ◽  
Author(s):  
Giacomo Betti ◽  
Cameron D. Grant ◽  
Robert S. Murray ◽  
G. Jock Churchman

Clay delving in strongly texture-contrast soils brings up subsoil clay in clumps ranging from large clods to tiny aggregates depending on the equipment used and the extent of secondary cultivation. Clay delving usually increases crop yields but not universally; this has generated questions about best management practices. It was postulated that the size distribution of the subsoil clumps created by delving might influence soil-water availability (and hence crop yield) because, although the clay increases water retention in the root-zone, it can also cause poor soil aeration, high soil strength and greatly reduced hydraulic conductivity. We prepared laboratory mixtures of sand and clay-rich subsoil in amounts considered practical (10% and 20% by weight) and excessive (40% and 60% by weight) with different subsoil clod sizes (<2, 6, 20 and 45 mm), for which we measured water retention, soil resistance, and saturated hydraulic conductivity. We calculated soil water availability by traditional means (plant-available water, PAW) and by the integral water capacity (IWC). We found that PAW increased with subsoil clay, particularly when smaller aggregates were used (≤6 mm). However, when the potential restrictions on PAW were taken into account, the benefits of adding clay reached a peak at ~40%, beyond which IWC declined towards that of pure subsoil clay. Furthermore, the smaller the aggregates the less effective they were at increasing IWC, particularly in the practical range of application rates (<20% by weight). We conclude that excessive post-delving cultivation may not be warranted and may explain some of the variability found in crop yields after delving.


Sign in / Sign up

Export Citation Format

Share Document