scholarly journals Single‐cell transcriptomes of mouse bladder urothelium uncover novel cell type markers and urothelial differentiation characteristics

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Yan Li ◽  
Yaxiao Liu ◽  
Zhengdong Gao ◽  
Lekai Zhang ◽  
Lipeng Chen ◽  
...  
Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 368
Author(s):  
Shi-Xun Ma ◽  
Su Bin Lim

Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have enhanced the understanding of the molecular pathogenesis of neurodegenerative disorders, including Parkinson’s disease (PD). Nonetheless, their application in PD has been limited due mainly to the technical challenges resulting from the scarcity of postmortem brain tissue and low quality associated with RNA degradation. Despite such challenges, recent advances in animals and human in vitro models that recapitulate features of PD along with sequencing assays have fueled studies aiming to obtain an unbiased and global view of cellular composition and phenotype of PD at the single-cell resolution. Here, we reviewed recent sc/snRNA-seq efforts that have successfully characterized diverse cell-type populations and identified cell type-specific disease associations in PD. We also examined how these studies have employed computational and analytical tools to analyze and interpret the rich information derived from sc/snRNA-seq. Finally, we highlighted important limitations and emerging technologies for addressing key technical challenges currently limiting the integration of new findings into clinical practice.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i610-i617
Author(s):  
Mohammad Lotfollahi ◽  
Mohsen Naghipourfar ◽  
Fabian J Theis ◽  
F Alexander Wolf

Abstract Motivation While generative models have shown great success in sampling high-dimensional samples conditional on low-dimensional descriptors (stroke thickness in MNIST, hair color in CelebA, speaker identity in WaveNet), their generation out-of-distribution poses fundamental problems due to the difficulty of learning compact joint distribution across conditions. The canonical example of the conditional variational autoencoder (CVAE), for instance, does not explicitly relate conditions during training and, hence, has no explicit incentive of learning such a compact representation. Results We overcome the limitation of the CVAE by matching distributions across conditions using maximum mean discrepancy in the decoder layer that follows the bottleneck. This introduces a strong regularization both for reconstructing samples within the same condition and for transforming samples across conditions, resulting in much improved generalization. As this amount to solving a style-transfer problem, we refer to the model as transfer VAE (trVAE). Benchmarking trVAE on high-dimensional image and single-cell RNA-seq, we demonstrate higher robustness and higher accuracy than existing approaches. We also show qualitatively improved predictions by tackling previously problematic minority classes and multiple conditions in the context of cellular perturbation response to treatment and disease based on high-dimensional single-cell gene expression data. For generic tasks, we improve Pearson correlations of high-dimensional estimated means and variances with their ground truths from 0.89 to 0.97 and 0.75 to 0.87, respectively. We further demonstrate that trVAE learns cell-type-specific responses after perturbation and improves the prediction of most cell-type-specific genes by 65%. Availability and implementation The trVAE implementation is available via github.com/theislab/trvae. The results of this article can be reproduced via github.com/theislab/trvae_reproducibility.


2021 ◽  
Vol 7 (6) ◽  
pp. eabd3311
Author(s):  
Gerda Kildisiute ◽  
Waleed M. Kholosy ◽  
Matthew D. Young ◽  
Kenny Roberts ◽  
Rasa Elmentaite ◽  
...  

Neuroblastoma is a childhood cancer that resembles developmental stages of the neural crest. It is not established what developmental processes neuroblastoma cancer cells represent. Here, we sought to reveal the phenotype of neuroblastoma cancer cells by comparing cancer (n = 19,723) with normal fetal adrenal single-cell transcriptomes (n = 57,972). Our principal finding was that the neuroblastoma cancer cell resembled fetal sympathoblasts, but no other fetal adrenal cell type. The sympathoblastic state was a universal feature of neuroblastoma cells, transcending cell cluster diversity, individual patients, and clinical phenotypes. We substantiated our findings in 650 neuroblastoma bulk transcriptomes and by integrating canonical features of the neuroblastoma genome with transcriptional signals. Overall, our observations indicate that a pan-neuroblastoma cancer cell state exists, which may be attractive for novel immunotherapeutic and targeted avenues.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


Author(s):  
Qianhui Huang ◽  
Yu Liu ◽  
Yuheng Du ◽  
Lana X. Garmire
Keyword(s):  
Rna Seq ◽  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joana S. Paiva ◽  
Pedro A. S. Jorge ◽  
Rita S. R. Ribeiro ◽  
Meritxell Balmaña ◽  
Diana Campos ◽  
...  

Genomics ◽  
2021 ◽  
Vol 113 (6) ◽  
pp. 3582-3598
Author(s):  
Xiujun Sun ◽  
Li Li ◽  
Biao Wu ◽  
Jianlong Ge ◽  
Yanxin Zheng ◽  
...  

1995 ◽  
Vol 352 (5) ◽  
pp. 469-476 ◽  
Author(s):  
Martina Schmidt ◽  
Christine Bienek ◽  
Chris J. van Koppen ◽  
Martin C. Michel ◽  
Karl H. Jakobs

Author(s):  
Yixuan Qiu ◽  
Jiebiao Wang ◽  
Jing Lei ◽  
Kathryn Roeder

Abstract Motivation Marker genes, defined as genes that are expressed primarily in a single cell type, can be identified from the single cell transcriptome; however, such data are not always available for the many uses of marker genes, such as deconvolution of bulk tissue. Marker genes for a cell type, however, are highly correlated in bulk data, because their expression levels depend primarily on the proportion of that cell type in the samples. Therefore, when many tissue samples are analyzed, it is possible to identify these marker genes from the correlation pattern. Results To capitalize on this pattern, we develop a new algorithm to detect marker genes by combining published information about likely marker genes with bulk transcriptome data in the form of a semi-supervised algorithm. The algorithm then exploits the correlation structure of the bulk data to refine the published marker genes by adding or removing genes from the list. Availability and implementation We implement this method as an R package markerpen, hosted on CRAN (https://CRAN.R-project.org/package=markerpen). Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document