Adipose tissue stromal vascular fraction and adipose tissue stromal vascular fraction plus platelet‐rich plasma grafting: New regenerative perspectives in genital lichen sclerosus

2020 ◽  
Vol 33 (6) ◽  
Author(s):  
Marinella Tedesco ◽  
Barbara Bellei ◽  
Valentina Garelli ◽  
Silvia Caputo ◽  
Alessandra Latini ◽  
...  
2016 ◽  
Vol 3 (04) ◽  
pp. 144 ◽  
Author(s):  
Hau Thi-My Lam ◽  
Minh Nguyen-Thu Tran ◽  
Khoa Anh Bui ◽  
Thao Thi-Thu Le ◽  
Khanh Hong-Thien Bui ◽  
...  

Introduction: Stem cell therapy is one of the most promising therapies for degenerative diseases and related injuries. Adipose tissue derived stem cells (ADSCs) exhibit some particular properties such as high production of paracrine factors. Indeed, ADSCs have been successfully used to treat diseases, including osteoarthritis, diabetic ulcer, etc. Methods: In this study, ADSCs were used to treat spinal cord injury (SCI) in a mouse model. Non-expanded ADSCs, from stromal vascular fractions (SVFs) isolated from both autologous and allogeneic adipose tissues, were injected into injured sites of mice at a specified dose. The SCI mouse model were generated by transection of spinal cord at vertebrae T8 - T10. After 1 week of transection, mice exhibiting completed SCI were divided into 4 groups: group 1 was control (mice without any treatment), group 2 was placebo (mice treated with platelet rich plasma (PRP)), group 3 was allogeneic SVF transplantation (mice treated with allogeneic SVFs), and group 4 was autologous SVF transplantation (mice treated with autologous SVFs). For the treatment groups, mice were transplanted with 20 µL of activated PRP or/and with 106 cells of SVF (allogeneic or autologous) into the injured position through laminectomy. The recovery of SCI was evaluated by locomotor test, sensory test and sensory-motor test at 5 weeks after transplantation. The histology of the spinal cord also was checked after 5 weeks. Results: The results showed that in all groups with PRP injected with or without SVFs, the inflammation was efficiently controlled. The glial scar as well as myelin defragmentation were clearly reduced. However, a significant improvement of BBB score was only recorded in mice transplanted with autologous SVFs. Conclusion: The results of our study show that autologous SVF transplantation in combination with PRP can be a promising therapy for SCI.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Jaewoo Pak ◽  
Jung Hun Lee ◽  
Wiwi Andralia Kartolo ◽  
Sang Hee Lee

Osteoarthritis (OA) is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs) in the form of stromal vascular fraction (SVF) may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP), have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2096
Author(s):  
Denis Simunec ◽  
Honey Salari ◽  
Juliane Meyer

Osteoarthritis (OA) is the most common form of arthritis of the joints. The stromal vascular fraction (SVF) is a regenerative cell population that can be isolated from adipose tissue. It is the immunomodulatory properties of the stromal vascular fraction that make it a promising candidate for the regenerative treatment of OA. Patients with grade 3 and 4 osteoarthritis were treated with the stromal vascular fraction with and without platelet-rich plasma (PRP) and followed up on their Knee Injury and Osteoarthritis Outcome Score (KOOS) score for 12 months, with MRI and subjective evaluation of the procedure. Magnetic resonance imaging (MRI) revealed a widening of the joint space, a restructuring of the cartilage, and an alleviation of effusions in the treated joints. In three of the four treatment groups, a substantial improvement of the KOOS scores was documented at the 12-month follow-up time point. According to the subjective evaluation, 67% of the patients were satisfied or very satisfied with the procedure and would recommend it to others. No serious adverse events or unwanted side effects related to the SVF treatment were observed or reported. Prior to an invasive artificial joint replacement, the treatment of arthritic knee joints with the intraarticular injection of autologous adipose tissue-derived SVF should be considered a regenerative treatment option.


2014 ◽  
Vol 222 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Jillian L Rourke ◽  
Shanmugam Muruganandan ◽  
Helen J Dranse ◽  
Nichole M McMullen ◽  
Christopher J Sinal

Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murineGpr1mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) andCmklr1,Gpr1expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygousGpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lackingGpr1exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects ofGpr1deficiency on adiposity, energy balance, and glucose homeostasisin vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.


2020 ◽  
Vol 52 (06) ◽  
pp. 521-532
Author(s):  
Constanze Kuhlmann ◽  
Thilo Ludwig Schenck ◽  
Elisabeth Maria Haas ◽  
Riccardo Giunta ◽  
Paul Severin Wiggenhauser

Zusammenfassung Hintergrund Nicht nur regenerative Therapie wie zellassistierter Lipotransfer (cell assisted lipotransfer) sondern auch präklinische experimentelle Studien verwenden in der Plastischen Chirurgie Stammzellen aus Fettgewebe, sogenannte Adipose tissue-derived Stem Cells (ASCs). Hierbei haben allerdings vom jeweiligen Stammzellspender abhängige Faktoren einen entscheidenden Einfluss auf die Zellausbeute und das regenerative Potential von ASCs und der Stromal vascular Fraction (SVF). Ziel dieser Übersichtsarbeit war es daher, diese Einflussfaktoren des Stammzellspenders darzustellen und anhand des aktuellen Wissenstands zu beurteilen. Methoden Es erfolgte eine intensive Literaturrecherche in der der National Library of Medicine, mit Fokus auf Einflussfaktoren der Stammzellspender, die eine Beeinflussung der Zellausbeute und des regenerativen Potentials von humanen ASCs und SVF in vorherigen Studien gezeigt haben. Ergebnisse Aktuell gibt es eine Vielzahl von Studien, welche sich mit den Einflussfaktoren des Stammzellspenders auseinandersetzen. Allerdings sind diese Faktoren sehr inhomogen und teilweise sogar widersprüchlich, so dass hier noch weiterer Forschungsbedarf besteht. Dennoch gibt es einige Faktoren, die gemäß der aktuellen Literatur gehäuft untersucht wurden: Alter, Geschlecht, Gewicht, Nebenerkrankungen (z. B. Diabetes, Lipödem) sowie spezielle Medikamente (Antidepressiva, Antihormontherapie) und Chemotherapie. Schlussfolgerung Wir empfehlen, bei experimentellen und klinischen Arbeiten mit ASCs/SVF eine Charakterisierung des Patientenkollektivs zu veröffentlichen, so dass mögliche Beeinflussungen durch oben genannte Faktoren kommuniziert werden und eine bessere Vergleichbarkeit von Studien ermöglicht wird. Darüber hinaus kann aber auch mit einer präzisen Anamnese und körperlichen Untersuchung vorab ein möglichst homogenes Patientenkollektiv für die Sammlung von Proben für wissenschaftliche Arbeiten konstruiert werden. Auch könnten die Ergebnisse dazu beitragen, den Erfolg zukünftiger ASC-basierter Therapien einzuschätzen.


Sign in / Sign up

Export Citation Format

Share Document