Rapidly progressing high o,p'DDD doses shorten the time required to reach the therapeutic threshold with an acceptable tolerance: preliminary results

2006 ◽  
Vol 64 (1) ◽  
pp. 110-113 ◽  
Author(s):  
Antongiulio Faggiano ◽  
Sophie Leboulleux ◽  
Jacques Young ◽  
Martin Schlumberger ◽  
Eric Baudin

A preliminary investigation of the first spectrum of Krypton was made by the author in 1931 and 1932,* to investigate the suitability of its lines for providing wave-length standards of the highest accuracy. The ten strongest lines in the violet were measured interferometrically, and these preliminary results indicated that the spectrum of krypton was eminently suited to give a system of standard wavelengths. The lines are extremely sharp, easily reproducible, and their distribution is such that it is possible to evaluate the thickness of an etalon without ambiguity, even when the roughly estimated thickness may be in error by several hundred waves. The spectrum has the advantage that the brightest lines are in the violet part of the spectrum, which eliminates the necessity of using panchromatic plates for photographing them, and they are of such great intensity that their photography takes only about one-tenth of the time required for the primary standard.


2009 ◽  
Vol 79-82 ◽  
pp. 1399-1402
Author(s):  
Mohan Trada ◽  
Harry Ku ◽  
Jayant Vedhar

A commercial phenol formaldehyde based resole thermosetting resin supplied by Borden Chemical Australia Pty. was filled with ceramic-based fillers (Envirospheres or SLG) to increase its flexural strength. By performing flexural tests at a range of filler addition levels, the optimal addition level of SLG was able to be determined in terms of workability, cost and performance. The composites obtained were post-cured in conventional oven and in microwaves respectively. It was found that the maximum flexural strength of the microwave cured composites were only 5% lower than those cured in conventional oven when the percentage by weight of SLG was 24%. However, the time required for post-curing was also reduced from 10 hours (in conventional oven) to 40 minutes (in microwaves).


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


2000 ◽  
Vol 179 ◽  
pp. 163-165
Author(s):  
S. K. Solanki ◽  
M. Fligge ◽  
P. Pulkkinen ◽  
P. Hoyng

AbstractThe records of sunspot number, sunspot areas and sunspot locations gathered over the centuries by various observatories are reanalysed with the aim of finding as yet undiscovered connections between the different parameters of the sunspot cycle and the butterfly diagram. Preliminary results of such interrelationships are presented.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
Irwin Bendet ◽  
Nabil Rizk

Preliminary results reported last year on the ion etching of tobacco mosaic virus indicated that the diameter of the virus decreased more rapidly at 10KV than at 5KV, perhaps reaching a constant value before disappearing completely.In order to follow the effects of ion etching on TMV more quantitatively we have designed and built a second apparatus (Fig. 1), which incorporates monitoring devices for measuring ion current and vacuum as well as accelerating voltage. In addition, the beam diameter has been increased to approximately 1 cm., so that ten electron microscope grids can be exposed to the beam simultaneously.


Author(s):  
R. Varughese ◽  
S. W. Thompson ◽  
P. R. Howell

Ever since Habraken and Economopoulos first employed the term granular bainite to classify certain unconventional transformation products in continuously cooled steels, the term has been widely accepted and used, despite the lack of a clear consensus as to the detailed nature of the transformation products which constitute granular bainite. This paper presents the preliminary results of a TEM investigation of an 0.04 wt% C, copper-containing steel (designated HSLA-100). It is suggested that the term granular ferrite rather than granular bainite is a more accurate description of this multiphase reaction product.Figure 1 is a light micrograph of a sample which had been air-cooled from 900°C to room temperature. The microstructure is typical of that which has been termed granular bainite in the past and appears to consist of equiaxed ferritic grains together with other minor transformation products. In order to examine these structures in more detail, both continuously cooled and isothermally transformed and quenched materials have been examined with TEM. Granular bainite has been found in virtually all samples.


Author(s):  
O. E. Bradfute

Electron microscopy is frequently used in preliminary diagnosis of plant virus diseases by surveying negatively stained preparations of crude extracts of leaf samples. A major limitation of this method is the time required to survey grids when the concentration of virus particles (VPs) is low. A rapid survey of grids for VPs is reported here; the method employs a low magnification, out-of-focus Search Mode similar to that used for low dose electron microscopy of radiation sensitive specimens. A higher magnification, in-focus Confirm Mode is used to photograph or confirm the detection of VPs. Setting up the Search Mode by obtaining an out-of-focus image of the specimen in diffraction (K. H. Downing and W. Chiu, private communications) and pre-aligning the image in Search Mode with the image in Confirm Mode facilitates rapid switching between Modes.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


Sign in / Sign up

Export Citation Format

Share Document