Dynamics of soil carbon to nitrogen ratio changes under long-term fertilizer addition in wheat-corn double cropping systems of China

2012 ◽  
Vol 63 (3) ◽  
pp. 341-350 ◽  
Author(s):  
R. H. Cong ◽  
X. J. Wang ◽  
M. G. Xu ◽  
W. J. Zhang ◽  
L. J. Xie ◽  
...  
2009 ◽  
Vol 6 (4) ◽  
pp. 6539-6577 ◽  
Author(s):  
W. J. Zhang ◽  
X. J. Wang ◽  
M. G. Xu ◽  
S. M. Huang ◽  
H. Liu ◽  
...  

Abstract. Soil organic carbon (SOC) data were collected from six long-term experiment sites in the upland of northern China. Various fertilization (e.g. inorganic fertilizations and combined inorganic-manure applications) and cropping (e.g. mono- and double-cropping) practices have been applied at these sites. Our analyses indicate that long-term applications of inorganic nitrogen-phosphorus (NP) and nitrogen-phosphorus-potassium (NPK) result in a significant increase in SOC at the sites with the double-cropping systems. The applications of inorganic NP and/or NPK combined with manure lead to a significantly increasing trend in SOC content at all the sites. However, the application of NPK with crop residue incorporation can only increase SOC content in the warm-temperate areas with the double-cropping systems. Regression analyses suggest that soil carbon sequestration responds linearly to carbon input at all the sites. Conversion rates of carbon input to SOC decrease significantly with an increase of annual accumulative temperature or precipitation, showing lower rates (6.8%–7.7%) in the warm-temperate areas than in the mid-temperate areas (15.8%–31.0%).


1999 ◽  
Vol 35 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. P. Sherchan ◽  
C. J. Pilbeam ◽  
P. J. Gregory

Farmers in the mid-hills of Nepal have a mix of rainfed land on which millet is grown in relay after maize (maize/millet), and irrigated land on which wheat is grown sequentially after rice (wheat–rice). Double cropping is the norm but the diminishing quantities of organic materials, coupled with the trend towards increased use of inorganic fertilizers, have raised questions about the long-term productivity and sustainability of the cropping systems. The aim of this work was to examine the long-term effects (eight years) on grain yield of additions of manure and fertilizer either singly or in combination. Maize/millet and wheat–rice rotations were established on a Dystochrept at Pakhribas Agricultural Centre at about 1450 m altitude. Manure and fertilizer applications were applied to the maize (eight combinations in May) and the wheat (different rates in seven combinations in November) every year with the succeeding crops (millet and rice) utilizing residual nutrients. Yields of maize, millet and rice were greater when manure rather than fertilizer was applied but yields of wheat were less. The combined application of manure and fertilizer significantly increased yields of maize and wheat compared with applications of either manure or fertilizer alone. However, for the subsequent crops (millet and rice) there was either a small residual benefit of the combined application when compared with fertilizer alone, or no benefit when compared with manure alone. Overall, the combined application increased total grain yields by about 35% in the maize/millet rotation and by 16% in the wheat–rice rotation. There was no trend in yields in response to treatment with time.


2015 ◽  
Vol 52 (1) ◽  
pp. 69-86 ◽  
Author(s):  
ANA PAULA PESSIM DE OLIVEIRA ◽  
PETER J. THORBURN ◽  
JODY S. BIGGS ◽  
EDUARDO LIMA ◽  
LÚCIA HELENA CUNHA DOS ANJOS ◽  
...  

SUMMARYTo evaluate the impact of trash management on sugarcane production and N fertiliser requirements in environmental conditions of Brazilian coastal tablelands, a simulation was conducted with APSIM-Sugar cropping systems model. The model was parameterised for, and validated against results from a long term (over 23 years) experiment comparing the system-burnt trash and green cane trash blanketing (GCTB), in Linhares-ES. Simulations were conducted over two crop cycles (14 years) with different management (100%, 75%, 50%, 25% GCTB and burnt trash), and N fertiliser rates from 0 to 240 kg ha−1 (in 40 kg ha−1 increments) on the ratoon crops, and 75% of these rates on the plant crops. Measured cane yields and soil carbon were simulated well by the model. The RMSE (root mean square error) of predictions in burnt and GCTB treatments were 14.02 Mg ha−1 and 13.45 Mg ha−1 for yield, and 0.09 and 0.13% for soil carbon. In the simulation, the cane yield responded positively to the GCTB systems. Optimum N rates were higher in the 100%, 75% and 50% GCTB than with burnt trash and 25% GCTB reflecting the greater yields under GCTB systems. The response to trash retention was dependent on N fertiliser, and it was smaller or even negative at lower N rates. With adequate N, the positive responses were predicted to occur in all crops after the imposition of GCTB system. The removal of any proportion of the trash reduced the potential sugarcane yield. The simulations showed that average environmental losses of N are likely to be greater from trash-retained systems at all N fertiliser rates.


2016 ◽  
Vol 27 (3) ◽  
pp. 612-619 ◽  
Author(s):  
Agata Novara ◽  
Ignazio Poma ◽  
Mauro Sarno ◽  
Giacomo Venezia ◽  
Luciano Gristina

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhiguo Hao ◽  
Yunfei Zhao ◽  
Xia Wang ◽  
Jinhong Wu ◽  
Silong Jiang ◽  
...  

AbstractMicrobial moribunds after microbial biomass turnover (microbial residues) contribute to the formation and stabilization of soil carbon pools; however, the factors influencing their accumulation on a global scale remain unclear. Here, we synthesized data for 268 amino sugar concentrations (biomarkers of microbial residues) in grassland and forest ecosystems for meta-analysis. We found that soil organic carbon, soil carbon-to-nitrogen ratio, and aridity index were key factors that predicted microbial residual carbon accumulation. Threshold aridity index and soil carbon-to-nitrogen ratios were identified (~0.768 and ~9.583, respectively), above which microbial residues decreased sharply. The aridity index threshold was associated with the humid climate range. We suggest that the soil carbon-to-nitrogen ratio threshold may coincide with a sharp decrease in fungal abundance. Although dominant factors vary between ecosystem and climate zone, with soil organic carbon and aridity index being important throughout, our findings suggest that climate and soil environment may govern microbial residue accumulation.


2010 ◽  
Vol 7 (2) ◽  
pp. 409-425 ◽  
Author(s):  
W. J. Zhang ◽  
X. J. Wang ◽  
M. G. Xu ◽  
S. M. Huang ◽  
H. Liu ◽  
...  

Abstract. Soil carbon sequestration is a complex process influenced by agricultural practices, climate and soil conditions. This paper reports a study of long-term fertilization impacts on soil organic carbon (SOC) dynamic from six long-term experiments. The experiment sites are located from warm-temperate zone with a double-cropping system of corn (Zea mays L.) – wheat (Triticum Aestivium L.) rotation, to mild-temperate zones with mono-cropping systems of continuous corn, or a three-year rotation of corn-wheat-wheat. Mineral fertilizer applications result in an increasing trend in SOC except in the arid and semi-arid areas with the mono-cropping systems. Additional manure application is important to maintain SOC level in the arid and semi-arid areas. Carbon conversion rate is significant lower in the warm-temperate zone with double cropping system (6.8%–7.7%) than that in the mild-temperate areas with mono-cropping systems (15.8%–31.0%). The conversion rate is significantly correlated with annual precipitation and active accumulative temperature, i.e., higher conversion rate under lower precipitation and/or temperature conditions. Moreover, soil high in clay content has higher conversion rate than soils low in clay content. Soil carbon sequestration rate ranges from 0.07 to 1.461 t ha−1 year−1 in the upland of northern China. There is significantly linear correlation between soil carbon sequestration and carbon input at most sites, indicating that these soils are not carbon-saturated thus have potential to migrate more CO2 from atmosphere.


2019 ◽  
Vol 14 (3) ◽  
pp. 142-146
Author(s):  
Luciano Pecetti ◽  
Lamberto Borrelli

After 20 years of application of different manure types, cropping systems and additional nitrogen (N) levels, their residual fertility effects were compared by measuring the yield of a following unfertilised wheat crop (Experiment 1), which was sown on exactly the same plots of the previous long-term trial. All previously applied factors caused significant differences in wheat yield. Wheat yielded more on plots that had received farmyard manure (FMY) compared to those where semi-liquid manure (SLM) was previously applied. Long-term application of a semi-intensive rotation, with three years of annual double cropping of autumnsown Italian ryegrass and spring-sown silage maize followed by three years of mown lucerne (R6), resulted in higher wheat yield than application of just the annual double cropping of Italian ryegrass and silage maize (R1). Application of further mineral N fertilisation to previous cropping systems caused higher yield of the subsequent wheat crop. The difference in wheat yield between the R6 and R1 systems was greater with SLM (+28%) than FYM application (+11%) resulting in a significant manure × system interaction. A companion experiment (Experiment 2) was carried out to compute the nitrogen agronomic efficiency (NAE) from the yield of wheat plots that were sown after ploughing a nearby 20- year unfertilised grassland and received four levels of mineral N fertilisation. NAE was further used to empirically estimate the productive advantage (PA) conferred by previous manure-systemmineral nitrogen combinations in the long-term trial. PA was measured as equivalent kg of mineral N to be applied to wheat to achieve the yield level recorded after any previous combination. The estimated PA values were much higher when wheat followed FYM compared to SLM application, and when it followed R6 compared to R1 system. The SLM-R1 combination had negative PA values, indicating a productive disadvantage on wheat of this preceding combination. The enhancement of residual soil fertility by long-term application of FYM compared to SLM could be attributed to greater nutrient provision during the years by FYM than by SLM. However, further fertility advantages of FYM are discussed. Despite lower nutrient supply by organic fertilisers in R6 than in R1 system, the former had higher residual fertility. The presence of lucerne in the R6 rotation likely enriched the soil in nitrogen and increased its availability for following cropping. Possible benefits of the legume on the soil suppressiveness might have been a further asset of the R6 system.


Sign in / Sign up

Export Citation Format

Share Document