Gas hydrates, free gas distribution and fault pattern on the west Svalbard continental margin

2010 ◽  
Vol 180 (2) ◽  
pp. 666-684 ◽  
Author(s):  
Gianni Madrussani ◽  
Giuliana Rossi ◽  
Angelo Camerlenghi
2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Juan Tomasini ◽  
Héctor de Santa Ana ◽  
Bruno Conti ◽  
Santiago Ferro ◽  
Pablo Gristo ◽  
...  

Natural gas hydrates are crystalline solids formed by natural gas (mainly methane) and water that are stable under thermobaric conditions of high pressure and low temperature. Methane hydrate is found in polar areas of permafrost and in offshore basins of continental margins. These accumulations may represent an enormous source of methane. Based on global estimations of methane concentration in natural gas hydrates, the methane content may be several times greater than those of technically recoverable, conventional natural gas resources. In the continental margin of Uruguay, seismic evidence for the occurrence of gas hydrate is based on the presence of (bottom simulating reflectors) BSRs in 2D seismic reflection sections. Here we present results regarding gas hydrates and associated free gas distribution assessment offshore Uruguay, based on BSR mapping and applying a probabilistic approach. A mean value of 25,890 km2 for the area of occurrence shows a great potential for this nonconventional resource, encouraging further research.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. B19-B34 ◽  
Author(s):  
Stefan Bünz ◽  
Jürgen Mienert ◽  
Maarten Vanneste ◽  
Karin Andreassen

Geophysical evidence for gas hydrates is widespread along the northern flank of the Storegga Slide on the mid-Norwegian margin. Bottom-simulating reflectors (BSR) at the base of the gas hydrate stability zone cover an area of approximately 4000 km[Formula: see text], outside but also inside the Storegga Slide scar area. Traveltime inversion and forward modeling of multicomponent wide-angle seismic data result in detailed P- and S-wave velocities of hydrate- and gas-bearing sediment layers. The relationship between the velocities constrains the background velocity model for a hydrate-free, gas-free case. The seismic velocities indicate that hydrate concentrations in the pore space of sediments range between 3% and 6% in a zone that is as much as 50 m thick overlying the BSR. Hydrates are most likely disseminated, neither cementing the sediment matrix nor affecting the stiffness of the matrix noticeably. Average free-gas concentrations beneath the hydrate stability zone are approximately 0.4% to 0.8% of the pore volume, assuming a homogeneous gas distribution. The free-gas zone underneath the BSR is about 80 m thick. Amplitude and reflectivity analyses suggest a rather complex distribution of gas along specific sedimentary strata rather than along the base of the gas hydrate stability zone (BGHS). This gives rise to enhanced reflections that terminate at the BGHS. The stratigraphic control on gas distribution forces the gas concentration to increase slightly with depth at certain locations. Gas-bearing layers can be as thin as 2 m.


2005 ◽  
Vol 53 (6) ◽  
pp. 803-810 ◽  
Author(s):  
José M. Carcione ◽  
Davide Gei ◽  
Giuliana Rossi ◽  
Gianni Madrussani

1989 ◽  
Vol 26 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Brian F. Windley

The Grenvillian Orogeny was preceded by extensive anorogenic volcanism and plutonism in the period 1500–1300 Ma in the form of rhyolites, epizonal granites, anorthosites, gabbros, alkaline complexes, and basic dykes. An analogue for the mid-Proterozoic anorogenic complexes is provided by the 2000 km by 200 km belt of anorogenic complexes in the Hoggar, Niger, and Nigeria, which contain anorthosites, gabbros, and peralkaline granites and were generated in a Cambrian to Jurassic rift that farther south led to the formation of the South Atlantic. An analogue for the 1 × 106 km2 area of 1500–1350 Ma rhyolites (and associated epizonal granites) that underlie the mid-continental United States is provided by the 1.7 × 106 km2 area of Jurassic Tobifera rhyolites in Argentina, which were extruded on the stretched continental margin of South America immediately preceding the opening of the South Atlantic. The mid-Proterozoic complexes were intruded close to the continental margin of the Grenvillian ocean and were commonly superimposed by the craton-directed thrusts that characterized the final stages of the Grenvillian Orogeny. The bulk of the Keweenawan rift and associated anorogenic magmatism formed about 1100 Ma at the same time as the Ottawan Orogeny in Ontario, which probably resulted from the collision of the island arc of the Central Metasedimentary Belt attached to the continental block in the east with the continental block to the west. The most appropriate modern equivalent would be the Rhine Graben, which formed at the same time as the main Alpine compression.


2018 ◽  
Vol 502 ◽  
pp. 231-243 ◽  
Author(s):  
Felix Gross ◽  
Joshu J. Mountjoy ◽  
Gareth J. Crutchley ◽  
Christoph Böttner ◽  
Stephanie Koch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document