Comparative Evaluation of Whey Protein Concentrate, Soy Protein Isolate and Calcium-Reduced Nonfat Dry Milk as Binders in an Emulsion-Type Sausage

1987 ◽  
Vol 52 (5) ◽  
pp. 1155-1158 ◽  
Author(s):  
S. A. ENSOR ◽  
R. W. MANDIGO ◽  
C. R. CALKINS ◽  
L. N. QUINT
2012 ◽  
Vol 573-574 ◽  
pp. 181-184
Author(s):  
Yu Peng Gao ◽  
Zhe Wang ◽  
Yan Qing Niu ◽  
Zhong Su Ma

The mechanical properties difference between soy protein isolate-based film and whey protein-based film was researched. The elongation at break, tensile strength of the pure soy protein isolate film both are better than that of the pure whey protein concentrate film, which is respectively 10 times and 25 times. After compounding the property of the whey protein concentrate film ameliorates. The elongation at break, tensile strength of the whey protein concentrate film increases respectively by 9 times and 16 times after the glutin is mixed. The elongation at break, tensile strength of the whey protein concentrate film increases by 1.1 times and 12 times after the chitosan is added.


RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 93275-93287 ◽  
Author(s):  
Jovita Kanoujia ◽  
Mahendra Singh ◽  
Pooja Singh ◽  
Poonam Parashar ◽  
Chandra Bhusan Tripathi ◽  
...  

Lipid lowering potential of soy protein isolate and whey protein concentrate as novel nanomaterial for atorvastatin nanoparticles.


Proceedings ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 22
Author(s):  
María Gabriela Bordón ◽  
Gabriela Noel Barrera ◽  
Maria C. Penci ◽  
Andrea Bori ◽  
Victoria Caballero ◽  
...  

Microencapsulation by different drying methods protects chia seed oil (CSO) against oxidative degradation, and ultimately facilitates its incorporation in certain foods. The aim of this work was to analyze the influence of freeze or spray drying, as well as of the coacervation phenomena in a ternary wall material blend—whey protein concentrate/soy protein isolate/gum arabic (WPC/SPI/GA)—on the physico–chemical properties of microencapsulated CSO. Differential scanning calorimetry studies indicated that the onset, peak, and end set temperatures for denaturation events shifted from 72.59, 77.96, and 78.02 to 81.34, 86.01, and 92.58 °C, respectively, in the ternary blend after coacervation. Oxidative stability indexes (OSI) of powders were significantly higher (p < 0.05) for both drying methods after inducing coacervation—from 6.45 to 12.04 h (freeze-drying) and 12.05 to 15.31 h (spray drying)—which was possibly due to the shifted denaturation temperatures after biopolymer interaction. It can be concluded that the ternary WPC/SPI/GA blend constitutes an adequate matrix to encapsulate CSO.


2011 ◽  
Vol 236-238 ◽  
pp. 2773-2779
Author(s):  
Ying Cao Xu ◽  
Zhi Biao Feng ◽  
Chun Hong Liu

A statistical experimental design to plastein synthesis which was catalyzed by transglutaminase, using the mixture of soy protein isolate(SPI) hydrolysate and whey protein isolate (WPI) hydrolysate, was investigated. Enzyme/Substrate(E/S:5-25U/g), pH(5-9) and temperature (35-65°C) were selected as major operating variables. To investigate the effects of variables to yield of plastein, the statistical experiment of Box-Behnken design(BBD) and Response Surface methodology(RSM) was employed. Regression analysis showed that the experiment data accorded with the predicted values obtained from quadratic regression equation in BBD with R-Squared of 0.9866 and F-value of 102.51. The optimum results estimated by BBD were as follows: E/S(19.5U/g), pH(6.8), and temperature(50.0°C), gave a maximum plastein yield of 54%. In the present experiment, the preliminary study on plastein functions such as foaming, emulsifying, were showed that plastein had a good biological function.


2008 ◽  
Vol 100 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Peter J. Royle ◽  
Graeme H. McIntosh ◽  
Peter M. Clifton

The effect of feed protein type on body composition and growth has been examined. Evidence exists that whey protein concentrate is effective at limiting body fat expansion. The presence of caseinomacropeptide, a mixture of glycosylated and non-glycosylated carbohydrate residues, in particular glycomacropeptide (GMP) in whey protein concentrate may be important for this effect. The influence of whey protein isolate (WPI) and GMP on weight gain and body composition was examined by feeding Wistar rats ad libitum for 7 weeks with five semi-purified American Institute of Nutrition-based diets differing in protein type: (1) casein; (2) barbequed beef; (3) control WPI (no GMP); (4) WPI+GMP at 100 g/kg; (5) WPI+GMP at 200 g/kg. Body composition was assessed, and plasma samples were assayed for TAG, insulin and glucose. Body-weight gain was lower ( − 21 %) on the control WPI diet relative to casein, with a non-significant influence associated with GMP inclusion ( − 30 %), the effect being equivalent at both levels of GMP addition. Renal and carcass fat mass were reduced in the highest GMP diet when compared with WPI (P < 0·05). Plasma insulin was lowered by GMP at the highest addition compared with WPI alone ( − 53 %; P < 0·01). Plasma TAG in the WPI+GMP (200 g/kg) group were lower ( − 27 %; P < 0·05) than the casein and beef groups. In conclusion, GMP appears to have a significant additional influence when combined with WPI on fat accumulation. WPI alone appears to have the predominant influence accounting for 70 % of the overall effect on body-weight gain. Mechanisms for this effect have not been identified but food intake was not responsible.


Sign in / Sign up

Export Citation Format

Share Document